

ESKİŞEHİR OSMANGAZİ UNIVERSITY

DEPARTMENT OF ELECTRICAL ELECTRONICS ENGINEERING

PLC AUTOMATION SYSTEM

LABORATORY

Manual

 2008

ver 2.00

 2

PLC Automation System Laboratory 2008

Objective

• To construct PLC programs in LAD using Siemens Step 7-Micro/Win 32.

• To run and debug the programs on S7-200 PLC.

Introduction to PLC

Controllers may consist of logical components and connections among them. Depending on the
current logical value of input, output is produced to change the status of the system. PLC may realize
such controllers.

Today, the command and feedback control systems of industrial automation systems are realized by
programmable logic controllers (PLCs). Siemens Simatic S7-200 is one of the PLC brands widely used
in industry.

In order for PLCs to work as controllers, they must be able to realize some functions. These functions
are basic and combinational logic operations such as AND, OR, AND-NOT, OR-NOT, timer and
counter operations. In addition to these, PLCs may have the ability to realize several transfer,
mathematical, and PID operations.

PLC consists of three main parts: CPU, memory and I/O units.

CPU is the brain of PLC. It reads the input values from inputs, runs the program existed in the program
memory and writes the output values to the output register. Memory is used to store different types of
information in the binary structure form. The memory range of S7-200 is composed of three main parts
as program, parameter, and retentive data fields. I/O units provide communication between PLC
control systems.

Constructing of PLC Program

There are mainly two methods for composing PLC programs: Ladder Logic Diagram (LAD) and
Statement List (STL). LAD method is commonly used to implement the programs for process controls.

A network of LAD is a row of connected elements that form a complete circuit between the left and
right power rail. The left power rail represents the energized conductor whereas the right power rail
represents the return path conductor of the circuit. Power flows from the left rail, through the closed
contacts to the coils or boxes connected to the right power rail. You can then use the power flow to
activate the outputs according to your program.

Step 7-Micro/Win 32 is user-friendly development environment for S7-200. A screen shot of Step 7-
Micro/Win 32 is shown in Figure 1.1.

Lab 1 : Getting familiar with Step 7- Micro/Win 32 and the S7-200 PLC

 3

Figure 1.1 Step 7-Micro/Win 32

A simple LAD realizing some Boolean operations is given below:

Figure 1.2 Sample LAD for Boolean operations.

 4

You can also switch between LAD and STL by selecting Ladder or STL from View menu. By this way,
you can see how LAD and STL relate to each other.

Figure 1.3 STL codes for the LAD in Figure 1.2

In STEP 7-Micro/WIN 32, click on New option in the Project menu for new project. After composing
program, click the Compile button on the taskbar. By clicking this button, software translates the
program code block into machine language for execution by the CPU. A program can not be
downloaded to the CPU until it is compiled. If there is an error in your program, your program will not
be compiled and software will warn you about the errors in your program. After correcting errors, try to
compile again.

� You can save your work by clicking Save All option in the Project menu. You can also load existed
projects by clicking Open option in the Project menu

Running PLC Programs

When the program is compiled successfully, click on the Download button on the taskbar to transfer
the compiled program to the PLC. During this operation, be sure that PLC is STOP or TERM mode.
When the transfer is completed, switch the PLC to RUN mode or click RUN button in the toolbar.
Now, PLC is running. Switch the inputs ON and OFF, and observe the change on outputs of the PLC
module. Check if your program works correctly.

You can also transfer the existed program in PLC to PC. In a similar way, when the PLC is STOP
mode, click on the Upload button on the taskbar. When the operation is completed, you can see the
program code existed in PLC on computer screen. Now you can modify the program if it is necessary.

� You can change the mode of PLC to either RUN, STOP or TERM using the switch on the PLC
module.

 5

Experimental Work

1. Construct a LAD for the following Boolean functions operations using the STEP 7-Micro/WIN
32. Transfer and run your programs on the PLC and verify that the PLC operates according to
the Boolean functions.

.

.().

.

. .().

a A B

b AB CD EF G

c A BC DEF

d A BC DE F

⊕

+ +

+ +

+

2. A PLC motor controller has two START buttons and two STOP buttons. The motor is to run if

two RUN buttons depressed simultaneously. The motor should run when the buttons are
released. Motor stops by depressing any STOP button stops. Construct a LAD for this motor
control task. Use the following symbols for the inputs and output:

START Button-1 START1

START Button-2 START2

STOP Button-1 STP1

STOP Button-2 STP2

MOTOR Starter MOTOR

 6

PLC Automation System Laboratory 2008

Objective

• To study the operation of bit logic instructions.

• To construct PLC program using the bit logic instructions.

Bit Logic Instructions

Contacts

Standard Contacts
The Normally Open contact instructions (LD, A, and O) and Normally Closed contact instructions (LDN, AN, ON)
obtain the referenced value from the memory or from the process-image register. The standard contact
instructions obtain the referenced value from the memory (or process-image register if the data type is I or Q).
The Normally Open contact is closed (on) when the bit is equal to 1, and the Normally Closed contact is closed
(on) when the bit is equal to 0. In STL, the Normally Open instructions Load, AND, or OR the bit value of the
address bit to the top of the stack, and the Normally Closed instructions Load, AND, or OR the logical NOT of the
bit value to the top of the stack.

Immediate Contacts
An immediate contact does not rely on the S7-200 scan cycle to update; it updates immediately. The Normally
Open Immediate contact instructions (LDI, AI, and OI) and Normally Closed Immediate contact instructions (LDNI,
ANI, and ONI) obtain the physical input value when the instruction is executed, but the process-image register is
not updated. The Normally Open Immediate contact is closed (on) when the physical input point (bit) is 1, and the
normally Closed Immediate contact is closed (on) when the physical input point (bit) is 0. The Normally Open
instructions immediately load, AND, or OR the physical input value to the top of the stack, and the Normally
Closed instructions immediately Load, AND, or OR the logical NOT of the value of the physical input point to the
top of the stack.

NOT Instruction
The Not instruction (NOT) changes the state of power flow input (that is, it changes the value on the top of the
stack from 0 to 1 or from1 to 0).

Positive and Negative Transition Instructions
The Positive Transition contact instruction (EU) allows power to flow for one scan for each off-to-on transition. The
Negative Transition contact instruction (ED) allows power to flow for one scan for each on-to-off transition. For the
Positive Transition instruction, detection of a 0-to-1 transition in the value on the top of the stack sets the top of
the stack value to 1; otherwise, it is set to 0. For a Negative Transition instruction, detection of a 1-to-0 transition
in the value on the top of the stack sets the top of the stack value to 1; otherwise, it is set to 0. For run mode
editing (when you edit your program in RUN mode), you must enter a parameter for the Positive Transition and
Negative Transition instructions.

Table 2-1 Valid Operands for the Bit Logic Input Instructions

Coils

Lab 2 : Bit Logic Instructions

 7

Output
The Output instruction (=) writes the new value for the output bit to the process-image register. When the Output
instruction is executed, the S7-200 turns the output bit in the process-image register on or off. For LAD, the
specified bit is set equal to power flow. For STL, the value on the top of the stack is copied to the specified bit.

Output Immediate
The Output Immediate instruction (=I) writes the new value to both the physical output and the corresponding
process-image register location when the instruction is executed. When the Output Immediate instruction is
executed, the physical output point (Bit) is immediately set equal to power flow. For STL, the instruction
immediately copies the value on the top of the stack to the specified physical output bit (STL). The “I” indicates an
immediate reference; the new value is written to both the physical output and the corresponding process-image
register location when the instruction is executed. This differs from the non-immediate references, which write the
new value to the process-image register only.

Set and Reset
The Set (S) and Reset (R) instructions set (turn on) or reset (turn off) the specified number of points (N), starting
at the specified address (Bit). You can set or reset from 1 to 255 points.

If the Reset instruction specifies either a timer bit (T) or counter bit (C), the instruction resets the timer or counter
bit and clears the current value of the timer or counter.

Set Immediate and Reset Immediate
The Set Immediate and Reset Immediate instructions immediately set (turn on) or immediately reset (turn off) the
number of points (N), starting at specified address (Bit). You can set or reset from 1 to 128 points immediately.
The “I” indicates an immediate reference; when the instruction is executed, the new value is written to both the
physical output point and the corresponding process-image register location. This differs from the non-immediate
references, which write the new value to the process-image register only.

Table 2-2 Valid Operands for the Bit Logic Output Instructions

Contact instructions

Coil instructions

 8

Experimental Work

An automatic stamp system shown in Figure 2 works as follows: When start switch is turned on,
system gets ready to run. When the operator puts a box at the beginning of the conveyor (on LS1) the
motor runs and conveyor moves. Upon reaching the mid point of the conveyor (on LS2) the conveyor
motor stops. Then the stamp comes down and puts the stamp on the box. When this process is
finished, the stamp goes up and conveyor moves again to the other end of the conveyor. After box
reaches to end of the conveyor (on LS3), the motor stops. The system waits for the box to get and the
another box to be placed at the beginning of the conveyor. If start switch is turned off, the system can
not run even if there is a box on conveyor. The light on the start box indicates that the system is active
whereas UP and Down lights indicate that the stamp is UP and DOWN position respectively. Develop
a LAD to control the stamp system.

Figure 2. Automatic stamp machine

 9

PLC Automation System Laboratory 2008

Objective

• To construct sequencer using bit logic instructions only.

See the course notes.

Experimental Work

A vehicle shown in Figure 3 carries two different objects with different sizes. Initially, the vehicle waits
at the mid-point of the system.

• When a large-sized object is placed on the vehicle, it moves backward up to the 1
st
drop point. After

reaching to the point, vehicle waits until the object on is removed. Then, vehicle returns back to the
mid-point.

• When a small-sized object is placed on the vehicle, it moves forward up to the 2
nd
 drop point. After

reaching to the point, vehicle waits until the object on is removed. Then, vehicle returns back to the
mid-point.

During the movement, if an object comes in front of the vehicle stops with the help of a photo sensor,
then a buzzer is turned on to indicate the situation. When the object is removed, the vehicle continues
its movement.

Red LED is on when the object is detected in front of the vehicle. The green LED indicates that the
vehicle reached 1

st
drop point, and yellow LED indicates that the vehicle reached to the 2

nd
 drop point.

Construct a LAD for this system.

Figure 3. Transportation of the objects using vehicle

Lab 3 : Sequencer

 10

PLC Automation System Laboratory 2008

Objective

• To study the operation of different types of timers.

• To use the PLC timers in a process control.

Timer Instructions

On-Delay Timer

Retentive On-Delay Timer
The On-Delay Timer (TON) and Retentive On-Delay Timer (TONR)
instructions count time when the enabling input is on. The timer
number (Txx) determines the resolution of the timer, and the
resolution is now shown in the instruction box.

TON TONR TOF

Off-Delay Timer
The Off-Delay Timer (TOF) is used to delay turning an output off for a fixed period of time after the
input turns off.

The timer number (Txx) determines the resolution of the timer, and the resolution is now shown in the
instruction box.

Table 4-1 Valid Operands for the SIMATIC Timer Instructions

• You can use a TON for timing a single interval.

• You can use a TONR for accumulating a number of timed intervals.

• You can use a TOF for extending time past an off (or false) condition, such as for cooling a
motor after it is turned off.

Lab 4 : Timers

 11

Table 4-2 Operations of the Timer Instructions

The TON and TONR instructions count time when the enabling input is on. When the current value is
equal to or greater than the preset time, the timer bit is on.

• The current value of a TON timer is cleared when the enabling input is off, whereas the
current value of the TONR timer is maintained when the input is off.

• You can use the TONR timer to accumulate time when the input turns on and off. Use the
Reset instruction (R) to clear the current value of the TONR.

• Both the TON and the TONR timers continue counting after the preset is reached, and they
stop counting at the maximum value of 32,767.

•
The TOF instruction is used to delay turning an output off for a fixed period of time after the input turns
off. When the enabling input turns on, the timer bit turns on immediately, and the current value is set to
0. When the input turns off, the timer counts until the elapsed time reaches the preset time.

• When the preset is reached, the timer bit turns off and the current value stops incrementing;
however, if the input turns on again before the TOF reaches the preset value, the timer bit
remains on.

• The enabling input must make an on-to-off transition for the TOF to begin counting time
intervals.

• If the TOF timer is inside an SCR region and the SCR region is inactive, then the current value
is set to 0, the timer bit is turned off, and the current value does not increment.

You can reset a TONR only by using the Reset (R) instruction. You can also use the Reset instruction
to reset any TON or TOF. The Reset instruction performs the following operations:

• Timer Bit = off

• Timer Current = 0
After a reset, TOF timers require the enabling input to make the transition from on to off in order for the
timer to restart.

Determining the Resolution of the Timer
Timers count time intervals. The resolution (or time base) of the timer determines the amount of time
in each interval. For example, a TON with a resolution of 10 ms counts the number of 10-ms intervals
that elapse after the TON is enabled: a count of 50 on a 10-ms timer represents 500 ms. The SIMATIC
timers are available in three resolutions: 1 ms, 10 ms, and 100 ms. As shown in Table 4-3, the timer
number determines the resolution of the timer.

To guarantee a minimum time interval, increase the preset value (PV) by 1. For example: To ensure a
minimum timed interval of at least 2100 ms for a 100-ms timer, set the PV to 22.

 12

Table 4-3 Timer Numbers and Resolutions

Understanding How Resolution Affects the Timer Action
For a timer with a resolution of 1 ms, the timer bit and the current value are updated asynchronous to
the scan cycle. For scans greater than 1 ms, the timer bit and the current value are updated multiple
times throughout the scan. For a timer with a resolution of 10 ms, the timer bit and the current value
are updated at the beginning of each scan cycle. The timer bit and current value remain constant
throughout the scan, and the time intervals that accumulate during the scan are added to the current
value at the start of each scan. For a timer with a resolution of 100 ms, the timer bit and current value
are updated when the instruction is executed; therefore, ensure that your program executes the
instruction for a 100-ms timer only once per scan cycle in order for the timer to maintain the correct
timing.

To guarantee that the output of a self-resetting timer is turned on for one scan each time the timer
reaches the preset value, use a normally closed contact instead of the timer bit as the enabling input
to the timer.

 13

Experimental Work

The system to be controlled by PLC consists of two belts. If the Start button is pressed, Conveyor
Belt-1 will begin to run. After 5 seconds Conveyor Belt-2 will be active. After the whole system runs
for 15 seconds, Conveyor Belt-1 will stop. Then Conveyor Belt-2 continues to move for 5 seconds
and then it will stop, too. Also the system can be reset by the emergency-stop button at any time.
Construct a LAD for S7-200 PLC to control the system.

 14

PLC Automation System Laboratory 2008

Objective

• To study the operation of different types of counters.

• To use the PLC counters and timers in a process control.

Counter Instructions

Count Up Counter
The Count Up instruction (CTU) counts up from the current value each time the
count up (CU) input makes the transition from off to on. When the current value
Cxx is greater than or equal to the preset value PV, the counter bit Cxx turns
on. The counter is reset when the Reset (R) input turns on, or when the Reset
instruction is executed. The counter stops counting when it reaches the
maximum value (32,767).

STL operation :

• Reset input: Top of stack

• Count Up input: Value loaded in the second stack location

Count Down Counter
The Count Down instruction (CTD) counts down from the current value of that
counter each time the count down (CD) input makes the transition from off to
on. When the current value Cxx is equal to 0, the counter bit Cxx turns on. The
counter resets the counter bit Cxx and loads the current value with the preset
value PV when the load input LD turns on. The counter stops upon reaching
zero, and the counter bit Cxx turns on.

Count Up/Down Counter
The Count Up/Down instruction (CTUD) counts up each time the count up (CU) input makes the
transition from off to on, and counts down each time the count down (CD) input makes the transition
from off to on. The current value Cxx of the counter maintains the current count. The preset value PV
is compared to the current value each time the counter instruction is executed. Upon reaching
maximum value (32,767), the next rising edge at the count up input causes the current count to wrap
around to the minimum value (-32,768). On reaching the minimum value (-32,768), the next rising
edge at the count down input causes the current count to wrap around to the maximum value
(32,767).

When the current value Cxx is greater than or equal to the preset value PV, the counter bit Cxx turns
on. Otherwise, the counter bit turns off. The counter is reset when the Reset (R) input turns on, or
when the Reset instruction is executed. The CTUD counter stops counting when it reaches PV.

Table 5-1 Valid Operands for the SIMATIC Counter Instructions

Lab 5 : Counters

 15

Since there is one current value for each counter, do not assign the same number to more than one
counter. (Up Counters, Up/Down Counters, and Down counters with the same number access the
same current value.) When you reset a counter using the Reset instruction, the counter bit is reset and
the counter current value is set to zero. Use the counter number to reference both the current value
and the counter bit of that counter.

Table 5-2 Operations of the Counter Instructions

 16

Experimental Work

A PLC-controlled system operates as follows. If the Start button is pressed, MV1 will be opened and
dye starts to fill the tank. At the same time mixing-motor begins to run. As the level of the dye passes
TBL2 and reaches to TBL1, MV1 will be closed and mixing-motor will stop. Then MV2 will be opened
and dye begins to run out of the container. After the level of the dye reaches to the below of TBL2,
MV2 will be closed. This process is repeated for two (2) times, then the system will stop.

We can observe the stopping of the system with the lamp and the buzzer.

After the system stops, buzzer will continue to run for 2 sec and then it stops. But the lamp continues
to light until the reset button is pressed. When the reset button is pressed, the system will be ready
to begin the same process again. Construct a LAD for this system.

 17

PLC Automation System Laboratory 2008

Objective

• To use jump and subroutine in a process control.

Jump Instructions
The Jump to Label instruction (JMP) performs a ranch
to the specified label N within the program. The Label
instruction (LBL) marks the location of the jump
destination N.

You can use the Jump instruction in the main program,
in subroutines, or in interrupt routines. The Jump and its
corresponding Label instruction must always be located
within the same segment of code (either the main
program, a subroutine, or an interrupt routine).

You cannot jump from the main program to a label in
either a subroutine or an interrupt routine. Likewise, you
cannot jump from a subroutine or interrupt routine to a
label outside that subroutine or interrupt routine.

You can use a Jump instruction within an SCR segment,
but the corresponding Label instruction must be located
within the same SCR segment.

Valid Operands for the Jump Instructions

Subroutine Instructions

The Call Subroutine instruction (CALL) transfers control to
the subroutine SBR_N. You can use a Call Subroutine
instruction with or without parameters. After the subroutine
completes its execution, control returns to the instruction that
follows the Call Subroutine.

The Conditional Return from Subroutine instruction (CRET)
terminates the subroutine based upon the preceding logic.
To add a subroutine, select the Edit > Insert > Subroutine
menu command.

From the main program, you can nest subroutines (place a
subroutine call within a subroutine) to a depth of eight. From
an interrupt routine, you cannot nest subroutines.

A subroutine call cannot be placed in any subroutine called
from an interrupt routine. Recursion (a subroutine that calls

Lab 6 : Program Control Instructions

 18

itself) is not prohibited, but you should use caution when
using recursion with subroutines.

When a subroutine is called, the entire logic stack is saved, the top of stack is set to one, all other stack locations
are set to zero, and control is transferred to the called subroutine. When this subroutine is completed, the stack is
restored with the values saved at the point of call, and control is returned to the calling routine.

Accumulators are common to subroutines and the calling routine. No save or restore operation is performed on
accumulators due to subroutine use. When a subroutine is called more than once in the same cycle, the edge/up,
edge/down, timer and counter instructions should not be used.

Valid Operands for the Subroutine Instruction

Calling a Subroutine With Parameters

Subroutines can contain passed parameters. The parameters are defined in the local variable table of the
subroutine. The parameters must have a symbol name (maximum of 23 characters), a variable type, and a data
type. Sixteen parameters can be passed to or from a subroutine. The variable type field in the local variable table
defines whether the variable is passed into the subroutine (IN), passed into and out of the subroutine (IN_OUT),
or passed out of the subroutine (OUT). Table 6-79 describes the parameter types for a subroutine. To add a
parameter entry, place the cursor on the variable type field of the type (IN, IN_OUT, or OUT) that you want to add.
Click the right mouse button to get a menu of options. Select the Insert option and then the Row Below option.
Another parameter entry of the selected type appears below the current entry.

 19

Parameter Types for a Subroutine

The parameter types are listed below:

BOOL: This data type is used for single bit inputs and outputs. IN3 in the following example is a Boolean
input.
BYTE, WORD, DWORD: These data types identify an unsigned input or output parameter of 1, 2, or 4 bytes,
respectively.

INT, DINT: These data types identify signed input or output parameters of 2 or 4 bytes,
respectively.

REAL: This data type identifies a single precision (4 byte) IEEE floating-point value.

STRING: This data type is used as a four-byte pointer to a string.

Power Flow: Boolean power flow is allowed only for bit (Boolean) inputs. This declaration tells STEP 7-Micro/WIN
that this input parameter is the result of power flow based on a combination of bit logic instructions. Boolean
power flow inputs must appear first in the local variable table before any other type input. Only input parameters
are allowed to be used this way. The enable input (EN) and the IN1 inputs in the following example use Boolean
logic.

 Local variable table

 20

Experimental Work

The system contains two conveyor belts. The conveyor carries balls and boxes. If the start button is
pushed, box conveyor will begin to move. When the box triggers the sensor SE2, the box conveyor
stops and the ball conveyor begins to move. The weight sensor WS measures the ball weights. If the
ball weight is 500 g, the sensor WS is on state(logic 1).The ball conveyor carries two different size of
the balls, 250 g and 500g. If weight of the first ball is 500 g, the box is filled with 3 balls. Otherwise the
box filled with five balls with 250g. In the system, the sensor SE1 is used to count the balls. After the
box is filled with the balls as specified above, the ball conveyor stops and box conveyor begins to
move.

The system can be reset by a stop button any time.

Construct the LAD for this process using only a) jump instruction, and b) subroutine instruction.

Input Output

Start and stop buttons
Sensors SE1, SE2 and WS

Ball conveyor motor
Box conveyor motor

 21

PLC Automation System Laboratory 2008

Objective

• To use some math instructions in a process control.

Multiply Integer to Double Integer and Divide Integer with Remainder

Multiply Integer to Double Integer

IN1 * IN2 = OUT LAD and FBD
IN1 * OUT = OUT STL

The Multiply Integer to Double Integer instruction (MUL)
multiplies two 16-bit integers and produces a 32-bit
product. In the STL MUL instruction, the least-significant
word (16 bits) of the 32-bit OUT is used as one of the
factors.

Divide Integer with Remainder

IN1 / IN2 = OUT LAD and FBD
OUT / IN1 = OUT STL

The Divide Integer with Remainder instruction (DIV)
divides two 16-bit integers and produces a 32-bit result
consisting of a 16-bit remainder (the most-significant
word) and a 16-bit quotient (the least-significant word).
In STL, the least-significant word (16 bits) of the 32-bit
OUT is used as the dividend.

SM Bits and ENO
For both of the instructions on this page, Special
memory (SM) bits indicate errors and illegal values. If
SM1.3 (divide by zero) is set during a divide operation,
then the other math status bits are left unchanged.
Otherwise, all supported math status bits contain valid
status upon completion of the math operation.

Special Memory bits affected
SM1.0 (zero)
SM1.1 (overflow)
SM1.2 (negative)
SM1.3 (divide by zero)

Lab 7 : Math Instructions

 22

Valid Operands for Add, Subtract, Multiply, and Divide Instructions

Multiply Integer to Double Integer and Divide Integer with Remainder

Multiply Integer to Double Integer

IN1 * IN2 = OUT LAD

IN1 * OUT = OUT STL

The Multiply Integer to Double Integer instruction (MUL)
multiplies two 16-bit integers and produces a 32-bit product.
In the STL MUL instruction, the least-significant word (16 bits) of
the 32-bit OUT is used as one of the factors.

Divide Integer with Remainder

IN1 / IN2 = OUT LAD

OUT / IN1 = OUT STL

The Divide Integer with Remainder instruction (DIV) divides two
16-bit integers and produces a 32-bit result consisting of a 16-bit
remainder (the most-significant word) and a 16-bit quotient (the
least-significant word). In STL, the least-significant word (16
bits) of the 32-bit OUT is used as the dividend.

SM Bits and ENO
For both of the instructions on this page, Special Memory (SM)
bits indicate errors and illegal values. If SM1.3 (divide by zero) is
set during a divide operation, then the other math status bits are
left unchanged. Otherwise, all supported math status bits
contain valid status upon completion of the math operation.

Special Memory bits affected
SM1.0 (zero)
SM1.1 (overflow)
SM1.2 (negative)
SM1.3 (divide by zero)

Valid Operands for Multiply Integer to Double Integer and Divide Integer with Remainder

 23

Increment and Decrement Instructions

Increment
IN + 1 = OUT LAD
OUT + 1 = OUT STL

Decrement
IN -- 1 = OUT LAD
OUT -- 1 = OUT STL

The Increment and Decrement instructions add or subtract 1
to or from the input IN and place the result into the variable
OUT.

Increment Byte (INCB) and Decrement Byte (DECB)
operations are unsigned. Increment Word (INCW) and
Decrement Word (DECW) operations are signed.

Increment Double Word (INCD) and Decrement Double
Word (DECD) operations are signed.

Special Memory bits affected:
SM1.0 (zero)
SM1.1 (overflow)
SM1.2 (negative) for Word and Double Word
operations

Valid Operands for the Increment and Decrement Instructions

 24

Experimental Work

The parking lot which has a capacity of 100 cars is to be controlled by a PLC system. The sensor S1
and S2 are used to count the car at the entrance and exit. If the number of the cars reaches to 100,
red light is lit and the gate arm is closed. The arm stays closed until one or more parking space is
available in the lot. The gate arm is controlled by activating/deactivating the gate solenoid (GS).

Construct LAD for the parking lot controller by using math instructions. Do not use counter instructions.

Input Output

Start and stop buttons
Sensors S1 and S2

Gate Solenoid
Light

