
“PIC Microcontrollers”

If you haven’t done it so far then it’s high time to learn what the
microcontrollers are and how they operate. Numerous illustrations

and practical examples along with detailed description of the
PIC16F887 will make you enjoy your work with the PIC

microcontrollers

Author: Milan Verle

Table of Contents

Introduction: World of Microcontrollers
Chapter 1: PIC16F887 Microcontrollers - Device Overview
Chapter 2: Core SFRs
Chapter 3: I/O Ports
Chapter 4: Timers
Chapter 5: CCP Modules
Chapter 6: Serial Communication Modules
Chapter 7: Analog Modules
Chapter 8: Other MCU's Circuits
Chapter 9: Instruction Set
Appendix A: Programming a Microcontroller
Appendix B: Examples
Appendix C: Development Systems

 2

Introduction: World of Microcontrollers

The situation we find ourselves today in the field of microcontrollers had its beginnings in the
development of technology of integrated circuits. This development has enabled to store hundreds
of thousands of transistors into one chip. That was a precondition for manufacture of
microprocessor and the first computers were made by adding external peripherals such as memory,
input/output lines, timers and others to it. Further increasing of package density resulted in creating
an integrated circuit which contained both processor and peripherals. That is how the first chip
containing a microcomputer later known as a microcontroller has developed.

This is how it all got started...

In the year 1969, a team of Japanese engineers from BUSICOM company came to the USA with a
request that a few integrated circuits for calculators were to be designed according to their projects.
The request was set to INTEL company and Marcian Hoff was in charge of the project there. Since
having been experienced in working with a computer PDP8, he came to an idea to suggest
fundamentally different solution instead of suggested design. That solution presumed that the
operation of integrated circuit the operation of integrated circuit was to be determined by the
program stored in the circuit itself. It meant that configuration would be simpler, but it would
require far more memory than the project proposed by Japanese engineers. After a while, even
though the Japanese engineers were trying to find an easier solution, Marcian’s idea won and the
first microprocessor was born. A major help with turning an idea into a ready-to-use product, Intel
got from Federico Faggin. Nine months after his arrival to Intel he succeeded in developing such a
product from its original concept. In 1971 Intel obtained the right to sell this integrated circuit.
Before that Intel bought the license from BUSICOM company which had no idea what a treasure it
had. During that year, a microprocessor called the 4004 appeared on the market. That was the first
4-bit microprocessor with the speed of 6000 operations per second. Not long after that, American
company CTC requested from Intel and Texas Instruments to manufacture 8-bit microprocessor to
be applied in terminals. Even though CTC gave up this project at last, Intel and Texas Instruments
kept working on the microprocessor and in April 1972 the first 8-bit microprocessor called the
8008 appeared on the market. It was able to address 16Kb of memory, had 45 instructions and the
speed of 300 000 operations per second. That microprocessor was the predecessor of all today’s
microprocessors. Intel kept on developing it and in April 1974 it launched 8-bit processor called
the 8080. It was able to address 64Kb of memory, had 75 instructions and initial price was $360.

In another American company called Motorola, they quickly realized what was going on, so they
launched 8-bit microprocessor 6800. Chief constructor was Chuck Peddle. Apart from the
processor itself, Motorola was the first company that also manufactured other peripherals such as
6820 and 6850. At that time many companies recognized greater importance of microprocessors
and began their own development. Chuck Peddle left Motorola to join MOS Technology and kept
working intensively on developing microprocessors.

At the WESCON exhibition in the USA in 1975, a crucial event in the history of the
microprocessors took place. MOS Technology announced that it was selling processors 6501 and
6502 at $25 each, which interested customers could purchase immediately. That was such
sensation that many thought it was a kind of fraud, considering that competing companies were
selling the 8080 and 6800 at $179 each. On the first day of exhibit, in response to the competitor,
both Motorola and Intel cut the prices of their microprocessors to $69.95. Motorola accused MOS
Technology and Chuck Peddle of plagiarizing the protected 6800. Because of that, MOS
Technology gave up further manufacture of the 6501, but kept manufacturing the 6502. It was 8-bit
microprocessor with 56 instructions and ability to directly address 64Kb of memory. Due to low

 3

price, 6502 became very popular so it was installed into computers such as KIM-1, Apple I, Apple
II, Atari, Commodore, Acorn, Oric, Galeb, Orao, Ultra and many others. Soon appeared several
companies manufacturing the 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh, Commodore took
over MOS Technology). In the year of its prosperity 1982, this processor was being sold at a rate
of 15 million processors per year!

Other companies did not want to give up either. Frederico Faggin left Intel and started his own
company Zilog Inc. In 1976 Zilog announced the Z80. When designing this microprocessor Faggin
made the crucial decision. Having been familiar with the fact that for 8080 had already been
developed he realized that many would remain loyal to that processor because of great expenditure
which rewriting of all the programs would result in. Accordingly he decided that a new processor
had to be compatible with the 8080, i.e. it had to be able to perform all the programs written for the
8080. Apart from that, many other features have been added so that the Z80 was the most powerful
microprocessor at that time. It was able to directly address 64Kb of memory, had 176 instructions,
a large number of registers, built in option for refreshing dynamic RAM memory, single power
supply, greater operating speed etc. The Z80 was a great success and everybody replaced the 8080
by the Z80. Certainly the Z80 was commercially the most successful 8-bit microprocessor at that
time. Besides Zilog, other new manufacturers such as Mostek, NEC, SHARP and SGS appeared
soon. The Z80 was the heart of many computers such as: Spectrum, Partner, TRS703, Z-3 and
Galaxy in our country.

In 1976 Intel came up with an upgraded version of 8-bit microprocessor called the 8085. However,
the Z80 was so much better that Intel lost the battle. Even though a few more microprocessors
appeared later on the market (6809, 2650, SC/MP etc.), everything was actually decided. There
were no such great improvements which could make manufacturers to change their mind, so the
6502 and Z80 along with the 6800 remained chief representatives of the 8-bit microprocessors of
that time.

Microcontroller versus microprocessor

A microcontroller differs from a microprocessor in many ways. The first and most important
difference is its functionality. In order that microprocessor may be used, other components such as
memory or for data transmission must be added to it. Even though the microprocessors are
considered to be powerful computer machines, their weak point is that they are not adjusted to
communication to peripheral environment.
Simply, In order to communicate with peripheral environment, the microprocessors must use
specialized circuits added as external chips. That means in short that microprocessors are the pure
heart of the computers. That is how it was when they appeared and the same is now.

 4

Fig. 0-1 Microcontroller versus Microprocessor

On the other hand, microcontroller is designed to be all of that in one. No other specialized
external components are needed for its application because all necessary circuits which otherwise
belong to peripherals are already built into it. It in any case saves the time and space needed to
design a device.

BASIC CONCEPTS

Did you know that all people can be classified into one of 10 groups- those who are familiar with
binary number system and those who are not familiar with it. You don’t understand? That means
that you still belong to the later group. If you want to change your status read the following text.
Text describing briefly some of the basic concepts used further in this book (just to be sure that we
discuss the same issues).

World of numbers

Mathematics is such a good science! Everything is so logical and is as simple as that. The whole
universe can be described with ten digits only. But, does it really have to be like that? Do we need
exactly ten digits? Of course not, it is only a matter of habit. Remember the lessons from the
school. For example, what does the number 764 mean: four units, six tens and seven hundreds.
Simple! Could it be described in a bit more complicated way? Of course it could: 4 + 60 + 700.
Even more complicated? Naturally: 4*1 + 6*10 + 7*100. Could this number look a bit more
“scientific”? The answer is yes: 4*10^0 + 6*10^1 + 7*10^2. What does it actually mean? Why do
we use exactly these numbers: 100, 101 and 102 ? Why is it always about the number 10? That is

 5

because we use ten different digits (0, 1, 2, ... 8, 9). In other words, because we use base-10
number system, i.e. decimal number system.

Fig. 0-2 The number 764 represented in three different ways

Binary number system

What would happen if only two digits would be used- 0 and 1? Or if we would not know to
determine whether something is 3 or 5 times greater than something else? Or if we would be
restricted when comparing two sizes, i.e. if we could only state that something exists (1) or does
not exist (0)? Nothing special would happen, we would keep on using numbers in the same way,
but they would look a bit different. For example: 11011010. How many pages of a book does the
number 11011010 include? In order to learn that, follow the same logic like in the previous
example, but in inverse order. Have in mind that all this is about mathematics with only two digits-
0 and 1, i.e. base-2 number system (binary number system).

Fig. 0-3 The number 218 represented in binary and decimal system

 6

Clearly, it is the same number represented in two different ways. The only difference is in the
number of digits necessary for writing some number. One digit (2) is used to write the number 2 in
decimal system, whereas two digits (1 and 0) are used to write that number in binary system. Do
you now agree with the first sentence in this text? Welcome to the world of binary arithmetic! Do
you have any idea where it is used?

Excepting strictly controlled laboratory conditions, the most complicated electronic circuits cannot
with accuracy determine difference between two sizes (two voltage values, for example) if they are
too small (lower than several volts). The reasons for that are electrical noises and something quite
uncertainly called “realistic working environment” (unpredictable changes of power supply
voltage, temperature changes, tolerance to values of built in components etc.). Imagine a computer
which would operate upon decimal numbers bers by recognizing 10 digits in the following way:
0=0V, 1=5V, 2=10V, 3=15V, 4=20V... 9=45V !? Did anybody say batteries? Far simpler solution
is the use of binary logic where 0 indicates that there is no voltage and 1 indicates that there is
voltage. Simply, it is easier to write 0 or 1 instead of “there is no voltage” or “there is voltage”. It is
so called logic zero (0) and logic one (1) which electronics perfectly cope with and easily performs
all those endlessly complex mathematical operations. It is apparently electronics which in reality
applies mathematics in which all numbers are represented by two digits only and in which it is only
important to know whether there is voltage or not. Of course, we are talking about digital
electronics.

Hexadecimal number system

At the very beginning of the computer development it was realized that people had many
difficulties in handling binary numbers. Because of that, a new number system which facilitated
work has been established. This time, it is about number system using 16 different digits. The first
ten digits are the same as digits we are used to (0, 1, 2, 3,... 9) but there are six digits more. In order
to keep from making up new symbols, the six letters of alphabet A, B, C, D, E and F are used. In
consequence of that, a hexadecimal number system consisting of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F has been established. What is the purpose of this seemingly bizarre combination?
Just look how perfectly everything fits the story about binary numbers.

Fig. 0-4 Binary and Hexadecimal number

The largest number that can be represented by 4 binary digits is the number 1111. It corresponds to
the number 15 in decimal system. That number is in hexadecimal system represented by only one
digit F. It is the largest one-digit number in hexadecimal system. Do you see how skillfully it is
used? The largest number written with eight binary digits is at the same time the largest two-digit
hexadecimal number. Have in mind that the computer uses 8-digit binary numbers. Accidentally?

BCD code

BCD code is actually a binary code for decimal numbers only. It is used to enable electronic
circuits to communicate in decimal number system with peripherals and in binary system within
“their own world”. It consists of 4-digit binary numbers which represent the first ten digits (0, 1, 2,

 7

3 ... 8, 9). Simply, even though four digits can give total of 16 possible combinations, only first ten
are used.

Number system conversion

Binary number system is the most commonly used, decimal system is the most understandable
while hexadecimal system is somewhere between them. Therefore, it is very important to learn
how to convert numbers from one number system to another, i.e. how to turn series of zeros and
units into values understandable for us.

Binary to decimal number conversion

Digits in a binary number have different values depending on their position in that number.
Additionally, each position can contain either 1 or 0 and its value may be easily determined by its
position from the right. To make the conversion of a binary number to decimal it is necessary to
multiply values with the corresponding digits (0 or1) and add all the results. The magic of binary to
decimal number conversion works...You doubt? Look at the example:

110 = 1*2^2 + 1*2^1 + 0*2^0 = 6

It should be further noticed that for decimal numbers from 0 to 3 it is enough to have two binary
digits. For greater values, new binary digits must be added. Thus, for numbers from 0 to 7 it is
enough to have three digits, for numbers from 0 to 15- four digits etc. Simply speaking, the largest
binary number consisting of n digits is obtained when the base 2 is raised by n. The result should
be afterwards subtracted by 1. For example, if n=4:

2^4 - 1 = 16 - 1 = 15

Accordingly, using 4 binary digits it is possible to represent decimal numbers from 0 to 15,
including these two digits, which amounts to 16 different values in total.

Hexadecimal to decimal number conversion

In order to make conversion of a hexadecimal number to decimal, each hexadecimal digit should
be multiplied with the number 16 raised by it’s position value. For example:

Fig. 0-5 Hexadecimal to decimal number conversion

Hexadecimal to binary number conversion

It is not necessary to perform any calculation in order to convert hexadecimal number to binary
number system. Hexadecimal digits are simply replaced by the appropriate four binary digits.

 8

Since the maximal hexadecimal digit is equivalent to decimal number 15, it is needed to use four
binary digits to represent one hexadecimal digit. For example:

Fig. 0-6 Hexadecimal to binary number conversion

Comparative table below contains the values of numbers 0-255 in three different number systems.
Why input/output? Because the user can change pin’s role according to his/her own needs. These
are, in fact, the only registers in the microcontroller whose state can be checked by voltmeter!

Marking numbers

Hexadecimal number system is along with binary and decimal number systems considered to be
the most important for us. It is easy to make conversion of any hexadecimal number to binary and
it is also easy to remember it. However, these conversions as well as common use of different
number systems may cause confusion. For example, what does the statement “It is necessary to
count up 110 products on assembly line” actually mean? Depending on whether it is about binary,
decimal or hexadecimal system, the result could be 6, 110 or 272 products, respectively!
Accordingly, in order to avoid misunderstandings, different prefixes and suffixes are directly added
to the numbers. The prefix $ or 0x as well as the suffix h marks the numbers in hexadecimal
system. For example, hexadecimal number 10AF may look as follows $10AF, 0x10AF or 10AFh.
Similarly, binary numbers usually get the suffix % or 0b, whereas decimal numbers get the suffix
D.

 9

Bit

Theory says a bit is the basic unit of information...Let us neglect such a dry explanation for a
moment and take a look at what it is in practice. The answer is- nothing special- a bit is a binary
digit. Similar to decimal number system in which digits in a number do not have the same value
(for example digits in the number 444 are the same, but have different values), the “significance”
of some bit depends on the position it has in binary number. Therefore, there is no point to talk
about units, tens ets. Instead, here it is about zero bit (rightmost bit), first bit (second from the
right) etc. In addition, since the binary system uses two digits only (0 and 1), the value of one bit
can be 0 or 1.

Do not let you be confused if you find some bit has value 4, 16 or 64. It means that bit’s values are
represented in decimal system. Simply, we have got so much accustomed to the usage of decimal
numbers that these expressions became common. It would be correct to say for example, “the value
of the sixth bit in binary number is equivalent to decimal number 64”. But we all are just humans
and a habit does its own...Besides, how would it sound “number: one-onezero- one-zero...”

Byte

A byte or a program word consists of eight bits placed next to each other. If a bit is a digit, it is
logical that bytes represent numbers. All mathematical operations can be performed upon them,
like upon common decimal numbers. As It is case with digits of any other number, byte digits do
not have the same significance. The largest value has the left-most bit called most significant bit
(MSB). The right-most bit has the least value and is therefore called least significant bit (LSB).
Since eight zeros and units of one byte can be combined in 256 different ways, the largest decimal
number which can be represented by one byte is 255 (one combination represents zero).
Concerning terminology used in computer science, a concept of nibble should be clearified.
Somewhere and somehow, this term referred to as half a byte came up. Depending on which half
of the byte we are talking about (left or right), there are “high” and “low” nibbles.

Fig. 0-8 High and Low nibbles

Logic circuits

Have you ever wondered what electronics within some digital integrated circuit, microcontroller or
processor look like? What do the circuits performing complicated mathematical operations and
making decisions look like? Do you know that their seemingly complicated schematics comprise
only a few different elements called “logic circuits” or “logic gates”?
The operation of these elements is based on the principles established by British mathematician
George Boole in the middle of the 19th century- meaning before the first bulb was invented! In
brief, the main idea was to express logical forms through algebraic functions. Such thinking was
soon transformed into a practical product which far later evaluated in what today is known as
AND, OR and NO logic circuits. The principle of their operation is known as Boolean algebra. As

 10

some program instructions used by the microcontroller perform the same way as logic gates but in
form of commands, the principle of their operation will be discussed here.

AND gate

A logic gate “AND” has two or more inputs and one output. Let us presume that the gate used in
this case has only two inputs. A logic one (1) will
appear on its output only in case both inputs (A
AND B) are driven to logic one (1). That’s all!

Schematic symbol of AND gate is shown in the
figure on the right.

Additionally, the table shows mutual dependence
between inputs and output.

In case the gate has more than two inputs, the principle of operation is the same: a logic one (1)
will appear on its output only in case all inputs are driven to logic one (1). Any other combination
of input voltages will result in logic zero (0) on its output.

When used in a program, logic AND operation is
performed by the program instruction, which will be
discussed later. For the time being, it is enough to
remember that logic AND in a program refers to the
corresponding bits of two registers.

OR gate

Similar to the previous case, OR gate also has
two or more inputs and one output. The gate
with only two inputs will be considered in this
case as well. A logic one (1) will appear on its
output in case either one or another output (A
OR B) is driven to logic one (1). In case the OR
gate has more than two inputs, the following
applies: a logic one (1) appears on its output in
case at least one input is driven to logic one (1). In case all inputs are driven to logic zero (0), the
output will be driven to logic zero (0).

In a program, logic OR operation is performed
between the corresponding registers’ bits- the same as
in logic AND operation.

 11

Not gate

This logic gate has only one input and only
one output. It operates in an extremely simple
way. When logic zero (0) appears on its input,
a logic one (1) appears on its output and vice
versa. This means that this gate inverts signal
by itself and because of that it is sometimes
called inverter.

In a program, logic NO operation is performed on one
byte bits. The result is a byte with inverted bits. If byte
bits are considered to be a number, inverted value is
actually a complement of that number, i.e. The
complement of a number is what is needed to add to it
to make it reach the maximal 8 bit value (255).

EXCLUSIVE OR gate

This gate is a bit complicated comparing to other gates. It
represents combination of all previously described gates. It is not
simple to define mutual dependence of input and output, but we
will anyway try to do it. A logic one (1) appears on its output only
in case the inputs have different logic states.

In a program, this operation is commonly used to
compare two bytes. Subtraction may be used for the
same purpose (if the result is 0, bytes are equal). The
advantage of this logic operation is that there is no
danger to subtract larger number from smaller one.

 12

Register

A register or a memory cell is an electronic circuit which can memorize the state of one byte. In
other words, what is a byte theoretically, it is a register practically.

Fig. 0-17 Register

SFR registers

In addition to the registers which do not have any special and predetermined function, every
microcontroller has also a number of registers whose function is predetermined by the
manufacturer. Their bits are connected (literally) to internal circuits such as timers, A/D converter,
oscillators and others, which means that they are directly in command of the operation of the
microcontroller. If you imagine that as eight switches which are in command of some smaller
circuit within the microcontroller- you are right! SFRs do exactly that!

Fig. 0-18 SFR registers

 13

Input / Output ports

In order that the microcontroller is of any use, it has to be connected to additional electronics, i.e.
peripherals. For that reason, each microcontroller has one or more registers (called “port” in this
case) connected to the microcontroller pins. Why input/output? Becuse you can change the pin’s
function as you wish. For example, suppose you want your device to turn on and off three signal
LEDs and simultaneously monitor logic state of five sensors or push buttons. In accordance with
that, some of ports should be configured so that there are three outputs (connected to LEDs) and
five inputs (connected to sensors). It is simply performed by software, which means that pin’s
function can be changed during operation.

Fig. 0-19 Input / Output ports

One of more important feature of I/O pins is maximal current they can give/get. For the most
microcontrollers, current obtained from one pin is sufficient to activate a LED or other similar low-
current consumer (10-20 mA). If the microcontroller has many I/O pins, then maximal current of
one pin is lower. Simply, you cannot expect all pins to give maximal current if there are more than
80 of them on one microcontroller.

Another important pin feature is to (not) have pull-up resistors. These resistors connect pin to
positive power supply voltage and their effect is visible when the pin is configured as input
connected to mechanical switch or push button. The later versions of the microcontrollers have
pull-up resistors connected to and disconnected from the pins by software.

Usually, each I/O port is under control of another SFR, which means that each bit of that register
determines state of the corresponding microcontroller pin. For example, by writing logic one (1) to
one bit of that control register SFR, the appropriate port pin is automatically configured as intput. It
means that voltage brought to that pin can be read as logic 0 or 1. Otherwise, by writing zero to the
SFR, the appropriate port pin is configured as output. Its voltage (0V or 5V) corresponds to the
state of the appropriate bit of the port register.

 14

Memory unit

Memory is part of the microcontroller used for data storage. The easiest way to explain it is to
compare it with a big closet with many drawers. Suppose, the drawers are clearly marked so that it
is easy to access any of them. It is enough to know the drawer’s mark to find out its contents.

Memory components are exactly like that. Each memory address corresponds to one memory
location. The content of any location becomes known by its addressing. Memory consists of all
memory locations and addressing is nothing but selecting one of them. This means that, on one
hand it is necessary to select the desired memory location, on the other hand it is necessary to wait
for the contents of that location. In addition to read, memory also has to allow writing to these
locations. There are several types of memory within the microcontroller:

ROM memory (Read Only Memory)

ROM memory is used to permanently save program being executed. Clearly, the size of a program
that can be written depends on the size of this memory. Today’s microcontrollers commonly use
16-bit addressing, which means that they are able to address up to 64 Kb memory, i.e. 65535
locations. For the sake of illustration, if you are the beginner, your program will rarely exceed limit
of several hundreds instructions. There are several types of ROM.

Masked ROM. Microcontrollers containing this ROM are reserved for the great manufacturers.
Program is loaded into the chip by the manufacturer. In case of large scale manufacture, the price is
very low. Forget it...

OTP ROM (One Time Programmable ROM). If the microcontroller contains this memory, you
can download a program into the chip, but the process of program downloading is “one-way
ticket”, meaning that it can be done only once. If you after downloading detect some error in a
program, the only thing you can do is to correct it and download that program to another chip.

 15

UV EPROM (UV Erasable Programmable ROM) Both manufacturing process and characteristics
of this memory are completely identical to OTP ROM. However, the package of this
microcontroller has recognizable “window” on the upper side. It enables surface of the silicon chip
to be lit by an UV lamp, which has for the result that complete program is cleared and a new
program download is enabled.
Installation of this window is very complicated, which normally affects the price. From our point
of view, unfortunately- negative...

Flash memory. This type of memory was invented in the 80s in laboratories of INTEL company
and were represented as successor of UV EPROM. Since the contents of this memory can be
written and cleared practically unlimited number of times, the microcontrollers with Flash ROM
are ideal for learning, experimentation and small-scale manufacture. Becuse of its popularity, the
most microcontrollers are manufactured in flash version today. So, if you are going to buy a
microcontroller, the right one is definitely Flash!

RAM memory (Random Access Memory).
Once the power supply is off the contents of RAM is cleared. It is used for temporary storing data
and intermediate results created and used during the operation of the microcontroller. For example,
if the program performs addition (of whatever), it is necessary to have a register representing what
in everyday life is called “sum”. For that purpose, one of the registers in RAM is called “sum” and
used for storing results of addition.

EEPROM memory (Electrically Erasable Programmable ROM)
The contents of this memory may be changed during operation (similar to RAM), but remains
permanently saved even upon the power supply goes off (similar to ROM). Accordingly,
EEPROM is often used to store values, created during operation, which must be permanently
saved. For example, if you design an electronic lock or an alarm, it would be great to enable the
user to create and enter a password on his/her own. Of course, a new password must be saved upon
power supply goes off. In such and similar cases, the ideal solution is the microcontroller with
embedded EEPROM.

Interrupt

The most programs use somehow interrupts in regular program execution. What does it actually
mean? The purpose of the microcontroller is mainly to react on changes in its surrounding. In other
words, when some event takes place, the microcontroller does something... For example, when you
push a button on remote controller, the microcontroller will register it and respond to the order by
changing a channel, turn the volume up or down etc. The bottom line is that the microcontroller
spends the most of its time in endlessly checking a few buttons- for hours, days... It’s not practical,
is it?

 16

Because of and similar situations, the microcontroller has learned during its evolution a trick.
Instead of checking each pin or bit constantly, the microcontroller has left the “wait issue” to the
“specialist” which will react only in case something worth attention happens.
Signal which inform the central processor about such event is called an INTERRUPT.

Central Processor Unit - CPU

As its name indicates, this is a unit which monitors and controls all processes inside the
microcontroller. It consists of several smaller units, of which the most important are:

• Instruction Decoder is a part of electronics which recognizes program instructions and
runs other circuits on the basis of that. The “instruction set” which is different for each
microcontroller family expresses the abilities of this circuit.

• Arithmetical Logical Unit (ALU) performs all mathematical and logical operations upon
data.

• Accumulator is a SFR closely related to the operation of ALU. It is a kind of working desk
used for storing all data upon which some operation should be performed (addition,
shift/move etc.). It also stores results ready for use in further processing. One of SFRs,
called Status Register (PSW), is closely related to the accumulator. It shows at any moment
the “status” of a number stored in the accumulator (number is greater or less than zero etc.).

Fig. 0-22 Central Processor Unit – CPU

Bus

Physically, the bus consists of 8, 16 or more wires. There are two types of buses: address and data
bus. The first one consists of as many lines as necessary for memory addressing. It is used to
transmit address from CPU to memory. The later one is as wide as data, in our case it is 8 bits or
wires wide. It is used to connect all circuits inside the microcontroller.

Serial communication

Connection between the microcontroller and peripherals via input/output ports is the ideal solution
for shorter distances- up to several meters. However, in other cases - when it is necessary to
establish communication between two devices on longer distances or when for some other reason it
is not possible to use parallel connection - such a simple solution is out of question. In those and
similar situations, serial communication is the solution imposing itself.

 17

Today, most microcontrollers have built in several different systems for serial communication as a
standard equipment. Which of these systems will be used in the very case depends on many factors
of which the most important are:

• How many devices the microcontroller has to exchange data with?
• How fast the data exchange has to be?
• What is the distance between devices?
• Is it necessary to send and receive data simultaneously?

One of the most important thing concerning serial communication is the Protocol which

Fig. 0-23 Serial communication

should be strictly observed. It is a set of rules which must be applied in order the devices can
correctly interpret data they mutually exchange. Fortunately, the microcontrollers automatically
take care of that, so the work of the programmer/user is reduced to simple write (data to be sent)
and read (received data).

Baud Rate

The term Baud rate is commonly used to denote the number of bits transferred per second [bps].
It should be noted that it refers to bits, not bytes! It is usually required by the protocol that each
byte is transferred along with several control bits. It means that one byte in serial data stream may

 18

consist of 11 bits. For example, if the baud rate is 300 bps then maximum 37 and minimum 27
bytes may be transferred per second, which depends on type of connection and protocol in use.
The most commonly used serial communication systems are:

I2C (Inter Integrated Circuit) is a system used when the distance between the microcontrollers is
short and specialized integrated circuits of of a new generation (receiver and transmitter are usually
on the same printed circuit board). Connection is established via two conductors- one is used for
data transfer whereas another is used for synchronization (clock signal). As seen in figure, in such
connection, one device is always master. It performs addressing of one slave chip (subordinated)
before communication starts. In this way one microcontroller can communicate with 112 different
devices. Baud rate is usually 100 Kb.sec (standard mode) or 10 Kb/sec (slow baud rate mode).
Systems with the baud rate of 3.4 Mb/sec have recently appeared. The distance between devices
which communicate via an inter-integrated circuit bus is limited to several meters.

SPI (Serial Peripheral Interface Bus) is a system for serial communication which uses four
conductors (usually three)- one for data receiving, one for data sending, one for synchronization
and one (alternatively) for selecting device to communicate with. It is full duplex connection,
which means that data are sent and received simultaneously. Maximal baud rate is higher than in
I2C connection.

UART (Universal Asynchronous Receiver/Transmitter)
As seen from the name itself, this connection is asynchronous, which means that a special line for
clock signal transmission is not used. In some situations this feature is crucial (for example, radio
connection or infrared waves remote control). Since only one communication line is used, both
receiver and transmitter operate at the same predefined rate in order to maintain necessary
synchronization. This is a very simple way of transferring data since it basically represents
conversion of 8-bit data from parallel to serial format. Baud rate is not high and amounts up to 1
Mbit/sec.

 19

Oscillator

Even pulses coming from the oscillator enable harmonic and synchronous operation of all circuits
of the microcontroller. The oscillator module is usually configured to use quartz crystal or ceramic
resonator for frequency stabilization. Furthermore, it can also operate without elements for
frequency stabilization (like RC oscillator). It is important to say that instructions are not executed
at the rate imposed by the oscillator itself, but several times slower. It happens because each
instruction is executed in several steps. In some microcontrollers, the same number of cycles is
needed to execute any instruction, while in others, the execution time is not the same for all
instructions. Accordingly, if the system uses quartz crystal with frequency of 20 Mhz, execution
time of an instruction is not 50nS, but 200, 400 or 800 nS, depending on the type of MCU!

Power supply circuit

There are two things worth attention concerning the microcontroller power supply circuit:
Brown out is a potentially dangerous state which occurs at the moment the microcontroller is being
turned off or in situations when power supply voltage drops to the limit due to powerful electric
noises. As the microcontroller consists of several circuits which have different operating voltage
levels, this state can cause its out-of-control performance. In order to prevent it, the microcontroller
usually has built-in circuit for brown out reset. This circuit immediately resets the whole
electronics when the voltage level drops below the limit.
Reset pin is usually marked as MCLR (Master Clear Reset) and serves for external reset of the
microcontroller by applying logic zero (0) or one (1), depending on type of the microcontroller. In
case the brown out circuit is not built in, a simple external circuit for brown out reset can be
connected to this pin.

 20

Timers/Counters

The microcontroller oscillator uses quartz crystal for its operation. Even though it is not the
simplest solution, there are many reasons to use it. Namely, since the frequency of such oscillator
is precisely defined and very stable, the pulses it generates are always of the

Fig. 0-27 Timers/Counters

same width, which makes them ideal for time measurement. Such oscillators are used in quartz
watches. If it is necessary to measure time passed between two events, it is just enough to count
pulses coming from this oscillator. That is exactly what the timer does.

Most programs use somehow these miniature electronic “stopwatches”. These are commonly 8- or
16-bit SFRs and their content is automatically incremented by each coming pulse. Once a register
is completely loaded - an interrupt is generated!

If the timer registers use internal quartz oscillator for their operation then it is possible to measure
time between two events (if the register value is T1 at the moment measurement has started, and
T2 at the moment it has finished, then the elapsed time is equal to the result of subtraction T2-T1).
If the registers use pulses coming from external source then such a timer is turned into a counter.
This is only a simple explanation of the operation itself.

 21

How does a timer operate?

In practice, everything works as follows: pulses coming from quartz oscillator are once per each
machine cycle directly or via prescaler brought to the circuit which increments number in the timer
register. If one instruction (one machine cycle) lasts for four quartz oscillator periods then, by
embedding quartz with the frequency of 4MHz, this number will be changed a million times per
second (each microsecond).

Fig. 0-28 How do timers operate?

It is easy to measure short time intervals (up to 256 microseconds) in a way described above
because it is the largest number that one register can contain. This obvious disadvantage may be
easily overcome in several ways by using slower oscillator, registers with more bits, prescaler or
interrupts. The first two solutions have some weaknesses so it is more recommended to use
prescaler and/or interrupt.

Using prescaler in timer operating

A prescaler is an electronic device used to reduce a frequency by a pre-determined factor. Meaning
that in order to generate one pulse on its output, it is necessary to bring 1, 2 , 4 or more pulses to its
input. One such circuit is built in the microcontroller and its division rate can be changed from
within the program. It is used when it is necessary to measure longer periods of time.
One prescaler is usually shared by timer and watch-dog timer, which means that it cannot be used
by both of them simultaneously.

Fig. 0-29 Using prescaler in timer operating

 22

Using interrupt in timer operating

If the timer register consists of 8 bits, the largest number that can be written to it is 255 (for 16-bit
registers it is the number 65.535). If this number is exceeded, the timer will be automatically reset
and counting will start from zero. This condition is called overflow. If enabled from within the
program, such overflow can cause interrupt, which gives completely new possibilities. For
example, the state of registers used for counting seconds, minutes or days can be changed in an
interrupt routine. The whole this process (except interrupt routine) is automatically performed “in
the background”, which enables main circuits of the microcontroller to perform other operations.

Fig. 0-30 Using interrupt in timer operating

The picture above illustrates the use of interrupt in timer operating. Delays of arbitrary duration
with minimal interference main program execution can be easily obtained by assigning a prescaler
to the timer.

Counters

If a timer is supplied with pulses over the microcontroller input pin then it turns into a counter.
Clearly, It is about the same electronic circuit. The only difference is that in this case pulses to be
counted come through the ports and their duration (width) is mostly not defined. That is why they
cannot be used for time measurement, but can be used to measure anything else: products on an
assembly line, number of axis rotation, passengers etc. (depending on sensor in use).

Watchdog Timer

As name itself indicates a lot about its purpose. Watchdog Timer is a timer connected to a
completely separate RC oscillator within the microcontroller.

If the watchdog timer is enabled, every time it counts up to end, the microcontroller reset occurs
and program execution starts from the first instruction. The point is to prevent this from happening
by using a specific command. The whole idea is based on the fact that every program is executed
in several longer or shorter loops.

If instructions which reset the watchdog timer are set on the appropriate program locations, besides
commands being regularly executed, then the operation of watchdog timer will not affect program

 23

execution. If for any reason (usually electrical noises in industry), the program counter “gets stuck”
on some memory location from which there is no return, the watchdog will not be cleared and the
register’s value being constantly incremented will reach the maximum et voila! Reset occurs!

Fig. 0-31 Watchdog Timer
A/D Converter

External signals are usually fundamentally different from those the microcontroller understands
(zero and one), so that they have to be converted in order the microcontroller can understand them.
An analog-to digital converter is an electronic circuit which converts continuous signals to discrete
digital numbers. This module is therefore used to convert some analog value into binary number
and forwards it to the CPU for further processing. In other words, this module is used for input pin
voltage measurement (analog value). The result of measurement is a number (digital value) used
and processed later in the program.

Fig. 0-32 A/D Converter

 24

Internal Architecture

All upgraded microcontrollers use one of two basic design models called Harvard and von-
Neumann architecture. What is it about?
Briefly, it is about two different ways of data exchange between CPU and memory.

von-Neumann architecture

Microcontrollers using this architecture has only one memory block and one 8-bit data bus. As all
data are exchanged by using these 8 lines, this bus is overloaded and communication itself is very
slow and unefficient. The CPU can either read an instruction or read/write data from/to the
memory. Both cannot occur at the same time since the instructions and data use the same bus
system. For example, if some program line says that RAM memory register called “SUM” should
be incremented by one (instruction: incf SUM), the microcontroller will do the following:
1. Read the part of the program instruction specifying WHAT should be done (in this very case it

is the “incf” instruction for increment).
2. Read further the same instruction specifying upon WHICH data it should be performed (in this

very case it is the “SUM” register).
3. After being incremented, the contents of this register should be written to the register from

which it was read (“SUM” register address).

The same data bus is used for all these intermediate operations.

Harvard architecture

 25

Microcontrollers using this architecture have two different data buses. One is 8-bit wide and
connects CPU to RAM memory. Another one consists of several lines (12, 14 or 16) and connects
CPU to ROM memory. Accordingly, the CPU can read an instruction and perform a data memory
access at the same time. Since all RAM memory registers are 8- bit wide, all data within the
microcontroller are exchanged in the same such format. Additionally, during program writing, only
8-bit data are considered. In other words, all you can ever change from within the program and all
you can affect will be 8- bit wide. Aprogram written for some of these microcontrollers will be
stored in the microcontroller internal ROM memory upon having being compiled into machine
language. However, these memory locations do not have 8, but 12, 14 or 16 bits. The rest of bits-
4, 6 or 8- represents the instruction itself specifying to CPU what to do with an 8-bit data.

The advantages of such design are the following:

• All data in a program are one byte (8 bit) wide. As data bus used for program reading has

several lines (12, 14 or 16), both instruction and data can be read simultaneously by using these
spare bits (it is familiar at once WHAT and upon WHICH). Because of that, all instructions are
executed in only one instruction cycle. The only exception is jump instructions which are
executed in two cycles.

• Owing to the fact that a program (ROM memory) and temporary data (RAM memory) are
separate, the CPU can execute two instructions simultaneously. Simply, while RAM memory
read or write is in progress (end of one instruc tion), the next program instruction is being read
via another bus.

• When using microcontrollers with von-Neumann architecture one never knows how much
memory is to be occupied by some program. In average, each program instruction occupies two
memory locations (one contains information on WHAT should be done, whereas another
contains information upon WHICH data it should be done). However, it is not a rule, but the
most common case. In microcontrollers with Harvard architecture, program bus is wider than
one byte, which allows each program word to consist of instruction and data. In other words:
one program word- one instruction.

INSTRUCTION SET

All instructions that can be understood by the microcontroller are known as instruction set. When
you write a program in assembly language, you actually “tell a story” by specifying instructions in
order they should be executed. The main restriction in this process is a number of available
instructions. The manufacturers stick to one of the two following strategies:

 26

RISC (Reduced Instruction Set Computer)

In this case, the idea is that the microcontroller recognizes and executes only basic operations
(addition, subtraction, copying etc.). All other more complicated operations are performed by
combining these (for example, multiplication is performed by performing successive addition). The
constrains are obvious (as if you try, by using only a few words, to explain to someone how to
reach the airport in some other city). However, there are also some great advantages. First of all,
this language is easy to learn. Besides, the microcontroller is very fast so that it is not possible to
see all the arithmetic “acrobatics” it performs. The user can only see the final result of all those
operations. At last, it is not so difficult to explain where the airport is if you use the right words.
For example: left, right, kilometer etc.

CISC (Complex Instruction Set Computer)

You already catch it- CISC is the opposite of RISC! Microcontrollers designed to recognize more
than 200 different instructions can do really much and are very fast. However, one should know
how to take all that such a rich language offers, which is not easy at all...

HOW TO MAKE THE RIGHT CHOICE

Ok, you are the beginner and you have made decision to let yourself go on an adventure of
working with the microcontrollers. Congratulations on the choice! However, it is not so easy to
choose the right microcontroller as it looks like at first sight. The problem is not a small range of
devices, but the opposite!

Before you start designing some device based on the microcontroller, think of the following: how
many input/output lines it is necessary for operation, should it perform some other operations than
to turn relay on/off, does it need some specialized module such as serial communication, A/D
converter etc. When you create a clear picture of what you need, the selection range is considerably
reduced, and it is time to think of price. Is your plan to have several same devices? Several
hundreds? A million? Anyway, you catch the point...

If you think of all these things for the very first time then everything seems a bit confusing. For
that reason, go step by step. First of all, select the manufacturer, i.e. the family of the
microcontrollers you can easily provide. After that, study one particular model. Learn as much as
you need, do not go into details. Solve a specific problem and something incredible will happen-
you will be able to handle any model belonging to that family.

More or less, everything reminds of riding bicycle: after several unavoidable bruises at the
beginning, you will manage to keep balance and will be able to easily ride any other bicycle. And
of course, you will never forget the skill in programming just as you will never forget riding
bicycle!

PIC microcontrollers

PIC microcontrollers designed by Microchip Technology are likely the right choice for you if you
are the beginner. Here is why...

The real name of this microcontroller is PICmicro (Peripheral Interface Controller), but it is better
known as PIC. Its first ancestor was designed in 1975 by General Instruments. This chip called
PIC1650 was meant for totally different purposes. Not longer than ten years after, by adding

 27

EEPROM memory, this circuit was transformed into a real PIC microcontroller. Nowadays,
Microchip Technology announces a manufacturing of the 5 billionth sample...

In order you can better understand the reasons for its popularity, we will briefly describe several
important things.

Family ROM
[Kbytes]

RAM
[bytes]

Pins
Clock
Freq.

[MHz]

A/D
Inputs

Resolution
of A/D

Converter

Compar-
ators

8/16 – bit
Timers

Serial
Comm.

PWM
Outputs

Others

Base-Line 8 - bit architecture, 12-bit Instruction Word Length

PIC10FXXX
0.375 -
0.75

16 - 24 6 - 8 4 - 8 0 - 2 8 0 - 1 1 x 8 - - -

PIC12FXXX 0.75 - 1.5 25 - 38 8 4 - 8 0 - 3 8 0 - 1 1 x 8 - - EEPROM

PIC16FXXX 0.75 - 3
25 -
134

14 -
44

20 0 - 3 8 0 - 2 1 x 8 - - EEPROM

PIC16HVXXX 1.5 25
18 -
20

20 - - - 1 x 8 - -
Vdd =
15V

Mid-Range 8 - bit architecture, 14-bit Instruction World Length

PIC12FXXX 1.75 - 3.5
64 -
128

8 20 0 - 4 10 1
1 - 2 x 8
1 x 16

- 0 - 1 EEPROM

PIC12HVXXX 1.75 64 8 20 0 - 4 10 1
1 - 2 x 8
1 x 16

- 0 - 1 -

PIC16FXXX 1.75 - 14
64 -
368

14 -
64

20 0 - 13 8 or 10 0 - 2
1 - 2 x 8
1 x 16

USART I2C
SPI

0 - 3 -

PIC16HVXXX 1.75 - 3.5
64 -
128

14 -
20

20 0 - 12 10 2
2 x 8 1 x

16
USART I2C

SPI
- -

High-End 8 - bit architecture, 16-bit Instruction Word Length

PIC18FXXX 4 - 128
256 -
3936

18 -
80

32 - 48 4 - 16 10 or 12 0 - 3
0 - 2 x 8
2 - 3 x 16

USB2.0
CAN2.0

USART I2C
SPI

0 - 5 -

PIC18FXXJXX 8 - 128
1024 -
3936

28 -
100

40 - 48 10 - 16 10 2
0 - 2 x 8
2 - 3 x 16

USB2.0
USART

Ethernet I2C
SPI

2 - 5 -

PIC18FXXKXX 8 - 64
768 -
3936

28 -
44

64 10 - 13 10 2
1 x 8 3 x

16
USART I2C

SPI
2 -

All PIC microcontrollers use harvard architecture, which means that their program memory is
connected to CPU via more than 8 lines. Depending on the bus width, there are 12-, 14- and 16-bit
microcontrollers. The table above shows the main features of these three categories.

As seen in the table on the previous page, excepting “16-bit monsters”- PIC 24FXXX and PIC
24HXXX- all PIC microcontrollers have 8-bit harvard architecture and belong to one out of three
large groups. Therefore, depending on the size of a program word there are first, second and third
category, i.e. 12-, 14- or 16-bit microcontrollers. Having similar 8- bit core, all of them use the
same instruction set and the basic hardware ‘skeleton’ connected to more or less peripheral units.

In order to avoid tedious explanations and endless story about the useful features of different
microcontrollers, this book describes the operation of one particular model belonging to “high
middle class”. It is about PIC16F887- powerful enough to be worth attention and simple enough to
be easily presented to everybody.

 28

Chapter 1: PIC16F887 Microcontroller - Device Overview

PIC16F887 is one of the latest products of Microchip. It features all the components which
upgraded microcontrollers normally have. For its low price, wide range of application, high quality
and easy availability, it is an ideal solution in applications such as: control of different processes in
industry, machine control device, measurement of different values etc. Some of its main features
are listed below.

RISC architecture

Only 35 instructions to learn
All single-cycle instructions except branches

Operating frequency 0-20 MHz
Precision internal oscillator

Factory calibrated
Software selectable frequency range of 8MHz to 31KHz

Power supply voltage 2.0-5.5V
Consumption: 220uA (2.0V, 4MHz), 11uA (2.0 V, 32 KHz) 50nA (stand-by mode)

Power-Saving Sleep Mode
Brown-out Reset (BOR) with software control option
35 input/output pins

High current source/sink for direct LED drive
software and individually programmable pull-up resistor
Interrupt-on-Change pin

8K ROM memory in FLASH technology
Chip can be reprogrammed up to 100.000 times
In-Circuit Serial Programming Option
Chip can be programmed even embedded in the target device

256 bytes EEPROM memory
Data can be written more than 1.000.000 times

368 bytes RAM memory
A/D converter:

14-channels
10-bit resolution

3 independent timers/counters
Watch-dog timer
Analog comparator module with

Two analog comparators
Fixed voltage reference (0.6V)
Programmable on-chip voltage reference

PWM output steering control
Enhanced USART module

Supports RS-485, RS-232 and LIN2.0
Auto-Baud Detect

Master Synchronous Serial Port (MSSP)
supports SPI and I2C mode

 29

 30

Pin Description

As seen in picture above, the most pins are multi-functional. For example, designator
RA3/AN3/Vref+/C1IN+ for the fifth pin specifies the following functions:

• RA3 Port A third digital input/output
• AN3 Third analog input
• Vref+ Positive voltage reference
• C1IN+ Comparator C1positive input

This small trick is often used because it makes the microcontroller package more compact without
affecting its functionality. These various pin functions cannot be used simultaneously, but can be
changed at any point during operation.

 31

In the following tables, all pins’ numbers refer to the PDIP 40 microcontroller.

 32

 33

Central Processor Unit (CPU)

Any attempt to explain in detail the operation of CPU would take us too far. Who is anyway
interested in that?! It is important to say that CPU is made in RISC technology because this fact
can affect you to buy exactly this microcontroller.

RISC stands for Reduced Instruction Set Computer, which gives the PIC16F887 two great
advantages:

• Its CPU can recognize and execute only 35 simple instructions (In order to program some other

microcontrollers it is necessary to know more than 200 instructions by heart).
• Execution time is the same for all of them and lasts 4 clock cycles (oscillator whose frequency

is stabilized by quartz crystal). The only exceptions are jump and branch instructions whose
execution time is twice as long. It means that if the microcontroller’s operating speed is

 34

20MHz, execution time of each instruc tion will be 200nS, i.e. the program will be executed at
the speed of 5 million instructions per second!

Memory

This microcontroller has three types of memory- ROM, RAM and EEPROM. All of them will be
separately discussed since each has specific function, features and organization.

ROM Memory

ROM memory is used to permanently save program being executed. That is why it is often called
“program memory”. The PIC16F887 has 8Kb ROM (in total of 8192 locations). Since, in this very
case, ROM is made in FLASH technology, its contents can be changed by providing special
programming voltage (13V).

Anyway, there is no need to explain it in detail because it is automatically performed by means of a
special program on PC and a simple electronic device called programmer (not original at all).

 35

EEPROM Memory

Similar to program memory, the contents of EEPROM is permanently saved, even upon the power
goes off. However, unlike ROM, the contents of EEPROM can be changed during operation of the
microcontroller. That is why this memory (256 locations) is a perfect one for permanently saving
results created and used during the operation.

RAM Memory

This is the third and the most complex part of microcontroller memory. In this very case, it consists
of two parts: general-purpose registers and special-function registers (SFR).
Even though both groups of registers are cleared when power goes off and even though they are
manufactured in the same way and act in the similar way, their functions do not have many things
in common.

 36

General-purpose registers

General-purpose registers are used for storing temporary data and results created during operation.
For example, if the program performs a counting (for example, counting products on the assembly
line), it is necessary to have a register which stands for what we in everyday life call “sum”. Since
the microcontroller is not creative at all, it is necessary to specify the address of some general
purpose register and assign it a new function. A simple program to increment the value of this
register by 1, after each product passes through a sensor, should be created.

Therefore, the microcontroller can execute that program because it now knows what and where the
sum which must be incremented is. Similar to this simple example, each program variable must be
preassigned some of general-purpose register.

SFR registers

Special-function registers are also RAM memory locations, but unlike general-purpose registers,
their purpose is predetermined during manufacturing process and cannot be changed. Since their
bits are physically connected to particular circuits on the chip (A/D converter, serial
communication module, etc.), any change of their contents directly affects the operation of the
microcontroller or some of its circuits. For example, by changing TRISA register, the function of
each port A pin can be changed in a way it acts as input or output. Another feature of these
memory locations is that they have their names (registers and their bits), which considerably
facilitates program writing. Since high-level programming language can use the list of all registers
with their exact addresses, it is enough to specify the register’s name in order to read or change its
contents.

RAM Memory Banks

The data memory is partitioned into four banks. Prior to access some register during program
writing (in order to read or change its contents), it is necessary to select bank which contains that
register. Two bits of the STATUS register are used for bank selecting, which will be discussed
later. In order to facilitate operation, the most commonly used SFRs have the same address in all
banks which enables them to be easily accessed.

 37

 38

 39

 40

STACK

A part of RAM used for stack consists of eight 13-bit registers. Before the microcontroller starts to
execute a subroutine (CALL instruction) or when an interrupt occurs, the address of first next
instruction being currently executed is pushed onto the stack, i.e. onto one of its registers. In that
way, upon subroutine or interrupt execution, the microcontroller knows from where to continue
regular program execution. This address is cleared upon return to the main program because there
is no need to save it any longer, and one location of the stack is automatically available for further
use.

It is important to know that data is always circularly pushed onto the stack. It means that after the
stack has been pushed eight times, the ninth push overwrites the value that was stored with first
push. The tenth push overwrites the second push and so on. Data overwritten in this way is not
recoverable. In addition, the programmer cannot access these registers for write or read and there is
no Status bit to indicate stack overflow or stack underflow conditions. For that reason, one should
take a special care of it during program writing.

 41

Interrupt System

The first thing that the microcontroller does upon an interrupt request arrives is to execute the
current instruction and then stop regular program execution. Immediately after that, the current
program memory address is automatically pushed onto the stack and default address (predefined by
the manufacturer) is written to the program counter. That location from where the program
continues execution is called interrupt vector. Concerning the PIC16F887 microcontroller, that
address is 0004h. As seen in figure below, the location containing interrupt vector is passed over
during regular program execution.

Part of the program being activated upon interrupt request arrives is called interrupt routine. Its
first instruction is located at the interrupt vector. How long this subroutine will be and what it will
be like depends on the skills of the programmer as well as the interrupt source itself. Some
microcontrollers have more interrupt vectors (every interrupt request has its vector), but in this
case there is only one. Consequently, the first part of interrupt routine consists in interrupt source
recognition.

At last, upon interrupt source is recognized and interrupt routine is executed, the microcontroller
reaches the RETFIE instruction, pops the address from the stack and continues program execution
from where it left off.

How to use SFRs

You have bought the microcontroller and have a great idea how to use it...There is a long list of
SFRs with all bits. Each of them controls some process. All in all, it looks like a big control table
with a lot of instruments and switches. Now you are concerned about whether you will manage to
learn how to use them all? You will probably not, but don’t worry, you don’t have to! Who anyway
needs that? Such powerful microcontrollers are similar to the supermarkets: they offer so many
things at low prices and it is only up to you to choose. Therefore, select the field you are interested
in and study only what you need to know. Afterwards, when you completely understand hardware
operation, study SFRs which are in control of it (there are usually a few of them). At last, during
program writing, prior to change some bit of these registers, do not forget to select the appropriate
bank. That is why they are listed in the tables above.

 42

Chapter 2: Core SFRs

Features and Function

The special function registers can be classified into two categories:

• Core (CPU) registers - control and monitor operation and processes in the central processor.
Even though there are only a few of them, the operation of the whole microcontroller
depends on their contents.

• Peripheral SFRs- control the operation of peripheral units (serial communication module,
A/D converter etc.). Each of these registers is mainly specialized for one circuit and for that
reason they will be described along with the circuit they are in control of.

The core (CPU) registers of the PIC16F887 microcontroller are described in this chapter. Since
their bits control several different circuits within the chip, it is not possible to classify them into
some special group. Because of that, which means that bits are described along with processes they
control.

STATUS Register

Fig. 2-1 STATUS Register

The STATUS register contains: the arithmetic status of the W register, the RESET status and the
bank select bits for data memory. One should be careful when writing some value to this register
because in case of negligence, the results may be different than expected. For example, if one try to
clear all bits using the CLRF STATUS instruction, the result in register will be 000xx1xx instead of
the expected 00000000. Such errors occur because some bits of this register are set or cleared
according to the hardware as well as because the bits 3 and 4 are readable only. For those reasons,
in case it is needed to change its content (for example, to change active bank), it is recommended
to use only instructions which do not affect any Status bits (C, DC and Z). Refer to “Instruction Set
Summary”.

IRP - Bit selects register bank. It is used for indirect addressing.

• 1 - Banks 0 and 1 are active (memory location 00h-FFh)
• 0 - Banks 2 and 3 are active (memory location 100h-1FFh)

 43

RP1,RP0 - Bits select register bank. They are used for direct addressing.

RP1 RP0 Active Bank

0 0 Bank0

0 1 Bank1

1 0 Bank2

1 1 Bank3

TO - Time-out bit.
1 - After power-on or after executing CLRWDT instruction which resets watch-dog timer or SLEEP
instruction which sets the microcontroller into low-consumption mode.
0 - After watch-dog timer time-out has occurred.

PD - Power-down bit.
1 - After power-on or after executing CLRWDT instruction which resets watch-dog timer.
0 - After executing of the SLEEP instruction which sets the microcontroller into low-consumption
mode.

Z - Zero bit
1 - The result of an arithmetic or logic operation is zero.
0 - The result of an arithmetic or logic operation is different from zero.

DC - Digit carry/borrow bit is changed during addition and subtraction in case an “overflow” or a
“borrow” of the result occur.
1 - A carry-out from the 4th low-order bit of the result has occurred.
0 - No carry-out from the 4th low-order bit of the result has occurred.

C - Carry/Borrow bit is changed during addition and subtraction in case an “overflow” or a
“borrow” of the result occur, i.e. if the result is greater than 255 or less than 0.
1 - A carry-out from the most significant bit of the result has occurred.
0 - No carry-out from the most significant bit of the result has occurred.

OPTION_REG Register

The OPTION_REG register contains various control bits to configure: Timer0/WDT prescaler,
timer TMR0, external interrupt and pull-ups on PORTB.

 44

RBPU - Port B Pull up Enable bit.

• 1 - Porta B pull-ups are disabled.
• 0 - Porta B pull-ups are enabled.

INTEDG - Interrupt Edge Select bit.

• 1 - Interrupt on rising edge of RB0/INT pin.
• 0 - Interrupt on falling edge of RB0/INT pin.

T0CS - TMR0 Clock Source Select bit.

• 1 - Timer TMR0 uses pulses transition on T0CKI pin.
• 0 - Timer TMR0 uses internal instruction cycle pulses

(Fosc/4).

T0SE - TMR0 Source Edge Select bit selects pulse edge
(rising or falling) counted by the timer TMR0 through the
RA4/T0CKI pin.

• 1 - Increment on high-to-low transition on TOCKI pin.
• 0 - Increment on low-to-high transition on TOCKI pin.

PSA - Prescaler Assignment bit assigns prescaler (only one
exists) to the timer or watchdog timer.

• 1 - Prescaler is assigned to the WDT.
• 0 - Prescaler is assigned to the TMR0.

 45

PS2, PS1, PS0 Prescaler Rate Select bits.

Prescaler rate is selected by combining these three bits. Besides, as shown in table below, prescaler
rate prescaler rate depends on whether prescaler is assigned (TMR0) or watch-dog timer (WDT).

PS2 PS1 PS0 TMR0 WDT

0 0 0 1:2 1:1

0 0 1 1:4 1:2

0 1 0 1:8 1:4

0 1 1 1:16 1:8

1 0 1 1:64 1:32

1 1 0 1:128 1:64

1 1 1 1:256 1:128

In order to achieve 1:1 prescaler rate when the timer TMR0 counts up pulses, the prescaler should
be assigned to the WDT. In consequence of that, the timer TMR0 does not use the prescaler, but
directly counts pulses generated by the oscillator, which was the objective!

Interrupt System Registers

When an interrupt request arrives it does not mean that interrupt will automatically occur, because
it must be also enabled by the user (from within the program). Because of that, there are special
bits used to enable or disable interrupts. It is easy to recognize these bits by IE contained in their
names (stands for Interrupt Enable). Besides, each interrupt is associated with another bit called
flag which indicates that interrupt request has arrived regardless of whether it is enabled or not.
They are also easily recognizable by the last two letters contained in their names- IF (Interrupt
Flag).

As seen, everything is based on a simple and efficient idea. When an interrupt request arrives, the
flag bit is to be set first.

Fig. 2-9 Interrupt System Registers

If the appropriate IE bit is not set (0), this event will be completely ignored. Otherwise, an interrupt
occurs! In case several interrupt sources are enabled, it is necessary to detect the active one before
interrupt routine starts execution. Source detection is performed by checking flag bits.

It is important to know that flag bits are not automatically cleared, but by software during interrupt
routine execution. If this detail is neglected, another interrupt will occur immediately upon return

 46

to the program, even though there is no more request for its execution! Simply, the flag as well as
IE bit remained set. Anyway, there is a big chance of spending another sleepless night...

All interrupt sources typical of the PIC16F887 microcontroller are shown on the next page. Note
several things:

• GIE bit - enables all unmasked interrupts and disables all interrupts simultaneously.
• PEIE bit - enables all unmasked peripheral interrupts and disables all peripheral interrupts

(This does not concern Timer TMR0 and port B interrupt sources).

To enable interrupt caused by changing logic state on port B, it is necessary to enable it for each bit
separately. In this case, bits of the IOCB register have the function to control IE bits.

Fig. 2-10 Interrupt SFRs

 47

INTCON Register

The INTCON register contains various enable and flag bits for TMR0 register overflow, PORTB
change and external INT pin interrupts.

Fig. 2-11 INTCON Register

GIE - Global Interrupt Enable bit - controls all possible interrupt sources simultaneously.

• 1 - Enables all unmasked interrupts.
• 0 - Disables all interrupts.

PEIE - Peripheral Interrupt Enable bit acts similar to GIE, but controls interrupts enabled by
peripherals. It means that it does not affect interrupts triggered by the timer TMR0 or by changing
state on port B or RB0/INT pin.

• 1 - Enables all unmasked peripheral interrupts.
• 0 - Disables all peripheral interrupts.

T0IE - TMR0 Overflow Interrupt Enable bit controls interrupt enabled by TMR0 overflow.

• 1 - Enables the TMR0 interrupt.
• 0 - Disables the TMR0 interrupt.

INTE - RB0/INT External Interrupt Enable bit controls interrupt caused by changing logic state
on pin RB0/IN (external interrupt).

• 1 - Enables the INT external interrupt.
• 0 - Disables the INT external interrupt.

RBIE - RB Port Change Interrupt Enable bit. When configured as inputs, port B pins may
cause interrupt by changing their logic state (no matter whether it is highto- low transition or vice
versa, fact that something is changed only matters). This bit determines whether interrupt is to
occur or not.

• 1 - Enables the port B on change interrupt.
• 0 - Disables the port B on change interrupt.

T0IF - TMR0 Overflow Interrupt Flag bit registers the timer TMR0 register overflow, when
counting starts from zero.

• 1 - TMR0 register has overflowed (bit must be cleared in software).
• 0 - TMR0 register has not overflowed.

INTF - RB0/INT External Interrupt Flag bit registers change of logic state on the RB0/INT pin.

• 1 - The INT external interrupt has occurred (must be cleared in software).
• 0 - The INT external interrupt has not occurred.

 48

RBIF - RB Port Change Interrupt Flag bit registers change of logic state of some port B input
pins.

• 1 - At least one of the port B general purpose I/O pins has changed state. Upon reading
portB, RBIF (flag bit) must be cleared in software.

• 0 - None of the port B general purpose I/O pins has changed state.

 49

PIE1 Register

The PIE1 register contains the peripheral interrupt enable bits.

Fig. 2-13 PIE1 register

ADIE - A/D Converter Interrupt Enable bit.

• 1 - Enables the ADC interrupt.
• 0 - Disables the ADC interrupt.

RCIE - EUSART Receive Interrupt Enable bit.

• 1 - Enables the EUSART receive interrupt.
• 0 - Disables the EUSART receive interrupt.

TXIE - EUSART Transmit Interrupt Enable bit.

• 1 - Enables the EUSART transmit interrupt.
• 0 - Disables the EUSART transmit interrupt.

SSPIE - Master Synchronous Serial Port (MSSP) Interrupt Enable bit - enables an interrupt
request to be generated upon each data transmission via synchronous serial communication module
(SPI or I2C mode).

• 1 - Enables the MSSP interrupt.
• 0 - Disables the MSSP interrupt.

CCP1IE - CCP1 Interrupt Enable bit enables an interrupt request to be generated in CCP1
module used for PWM signal processing.

• 1 - Enables the CCP1 interrupt.
• 0 - Disables the CCP1 interrupt.

TMR2IE - TMR2 to PR2 Match Interrupt Enable bit

• 1 - Enables the TMR2 to PR2 match interrupt.
• 0 - Disables the TMR2 to PR2 match interrupt.

TMR1IE - TMR1 Overflow Interrupt Enable bit enables an interrupt request to be generated
upon each timer TMR1 register overflow, i.e. when the counting starts from zero.

• 1 - Enables the TMR1 overflow interrupt.
• 0 - Disables the TMR1 overflow interrupt.

 50

PIE2 Register

The PIE2 Register also contains the various interrupt enable bits.

Fig. 2-15 PIE2 Register

OSFIE - Oscillator Fail Interrupt Enable bit.

• 1 - Enables oscillator fail interrupt.
• 0 - Disables oscillator fail interrupt.

C2IE - Comparator C2 Interrupt Enable bit.

• 1 - Enables Comparator C2 interrupt.
• 0 - Disables Comparator C2 interrupt.

C1IE - Comparator C1 Interrupt Enable bit.

• 1 - Enables Comparator C1 interrupt.
• 0 - Disables Comparator C1 interrupt.

EEIE - EEPROM Write Operation Interrupt Enable bit.

• 1 - Enables EEPROM write operation interrupt.
• 0 - Disables EEPROM write operation interrupt.

BCLIE - Bus Collision Interrupt Enable bit.

• 1 - Enables bus collision interrupt.
• 0 - Disables bus collision interrupt.

ULPWUIE - Ultra Low-Power Wake-up Interrupt Enable bit.

• 1 - Enables Ultra Low-Power Wake-up interrupt.
• 0 - Disables Ultra Low-Power Wake-up interrupt.

CCP2IE - CCP2 Interrupt Enable bit.

• 1 - Enables CCP2 interrupt.
• 0 - Disables CCP2 interrupt.

 51

PIR1 Register

The PIR1 register contains the interrupt flag bits.

Fig. 2-17 PIR1 Register

ADIF - A/D Converter Interrupt Flag bit.

• 1 - A/D conversion is completed (bit must be cleared in software).
• 0 - A/D conversion is not completed or has not started.

RCIF - EUSART Receive Interrupt Flag bit.

• 1 - The EUSART receive buffer is full. Bit is cleared by reading the RCREG register.
• 0 - The EUSART receive buffer is not full.

TXIF - EUSART Transmit Interrupt Flag bit.

• 1 - The EUSART transmit buffer is empty. Bit is cleared by writing to the TXREG register.
• 0 - The EUSART transmit buffer is full.

SSPIF - Master Synchronous Serial Port (MSSP) Interrupt Flag bit.

• 1 - The MSSP interrupt condition during data transmit/receive has occurred. These
conditions differ depending on MSSP operating mode (SPI or I2C) This bit must be cleared
in software before returning from the interrupt service routine.

• 0 - No MSSP interrupt condition has occurred.

CCP1IF - CCP1 Interrupt Flag bit.

• 1 - CCP1 interrupt condition has occurred (CCP1 is unit for capturing, comparing and
generating PWM signal). Depending on operating mode, capture or compare match has
occurred. In both cases, bit must be cleared in software. This bit is not used in PWM mode.

• 0 - No CCP1 interrupt condition has occurred.

TMR2IF - Timer2 to PR2 Interrupt Flag bit

• 1 - TMR2 (8-bit register) to PR2 match has occurred. This bit must be cleared in software
before returning from the interrupt service routine.

• 0 - No TMR2 to PR2 match has occurred.

TMR1IF - Timer1 Overflow Interrupt Flag bit

• 1 - The TMR1 register has overflowed. This bit must be cleared in software.
• 0 - The TMR1 register has not overflowed.

 52

PIR2 Register

The PIR2 register contains the interrupt flag bits.

Fig. 2-18 PIR2 register

OSFIF - Oscillator Fail Interrupt Flag bit.

• 1 - System oscillator failed and clock input has changed to internal oscillator INTOSC. This
bit must be cleared in software.

• 0 - System oscillator operates normally.

C2IF - Comparator C2 Interrupt Flag bit.

• 1 - Comparator C2 output has changed (bit C2OUT). This bit must be cleared in software.
• 0 - Comparator C2 output has not changed.

C1IF - Comparator C1 Interrupt Flag bit.

• 1 - Comparator C1 output has changed (bit C1OUT). This bit must be cleared in software.
• 0 - Comparator C1 output has not changed.

EEIF - EE Write Operation Interrupt Flag bit.

• 1 - EEPROM write completed. This bit must be cleared in software.
• 0 - EEPROM write is not completed or has not started.

BCLIF - Bus Collision Interrupt Flag bit.

• 1 - A bus collision has occurred in the MSSP when configured for I2C Master mode. This
bit must be cleared in software.

• 0 - No bus collision has occurred.

ULPWUIF - Ultra Low-power Wake-up Interrupt Flag bi t.

• 1 - Wake-up condition has occurred. This bit must be cleared in software.
• 0 - No Wake-up condition has occurred.

CCP2IF - CCP2 Interrupt Flag bit.

• 1 - CCP2 interrupt condition has occurred (unit for capturing, comparing and generating
PWM signal). Depending on operating mode, capture or compare match has occurred. In
both cases, the bit must be cleared in software. This bit is not used in PWM mode.

• 0 - No CCP2 interrupt condition has occurred.

 53

PCON register

The PCON register contains only two flag bits used to differentiate between a: power-on reset,
brown-out reset, Watchdog Timer Reset and external reset (through MCLR pin).

Fig. 2-21 PCON register

ULPWUE - Ultra Low-Power Wake-up Enable bit

• 1 - Ultra Low-Power Wake-up enabled.
• 0 - Ultra Low-Power Wake-up disabled.

SBOREN - Software BOR Enable bit

• 1 - Brown-out Reset enabled.
• 0 - Brown-out Reset disabled.

POR - Power-on Reset Status bit

• 1 - No Power-on reset has occurred.
• 0 - Power-on reset has occurred. This bit must be set in software after a Power-on Reset

occurs.

BOR - Brown-out Reset Status bit

• 1 - No Brown-out reset has occurred.
• 0 - Brown-out reset has occurred. This bit must be set in software after a Brown-out Reset

occurs.

PCL and PCLATH Registers

The size of program memory of PIC16F887 is 8K. Therefore, it has 8192 locations for program
storing. For that reason the program counter must be 13-bits wide (2^13 = 8192). In order that the
contents of some location may be changed in software during operation, its address must be
accessible through some SFR. Since all SFRs are 8-bit wide, this register is “artificially” created by
dividing its 13 bits into two independent registers: PCLATH and PCL.

If the program execution does not affect program counter, the value of this register is automatically
and constantly incremented +1, +1, +1, +1... In that way, the program is executed just as it is
writen- instruction by instruction, followed by constant address increment.

 54

Fig. 2-23 PCL and PCLATH Registers

If the program counter is changed in software, then there are several things that should be kept in
mind in order to avoid troubles:

• Eight lower bits (the low byte) come from the PCL register which is readable and writable,

whereas five upper bits coming from the PCLATH register are writable only.

• The PCLATH register is cleared on any reset.

• In assembly language, the value of the program counter is marked with PCL, but it obviously

refers to 8 lower bits only. One should take care of that when using the “ADDWF PCL”
instruction. This is a jump instruction which specifies the target location by adding some
number to the current address. It is often used on the occasion of jumping into a look-up table
or program branch table to read them. A problem arises if the current address is such that
addition causes change on some bit belonging to the higher byte of the PCLATH register. Do
you see what is going on?

Executing any instruction upon the PCL register simultaneously causes the Prog ram Counter
bits to be replaced by the contents of the PCLATH register. However, the PCL register has
access to only 8 lower bits of the instruction result and the following jump will be completely
incorrect. The problem is solved by setting such instructions at addresses ending by xx00h.
This enables program to jump up to 255 locations. If longer jumps are executed by this
instruction, the PCLATH register must be incremented by 1 for each PCL register overflow.

• On subroutine call or jump execution (instructions CALL and GOTO), the microcontroller is able

to provide only 11-bit address. For that reason, similar to RAM which is divided in “banks”,
ROM is divided in four “pages” in size of 2K each. Such instructions are executed within these
pages without any prob lem. Simply, since the processor is provided with 11-bit address from
the program, it is able to address any location within 2KB. Figure below illustrates this
situation as a jump to the subroutine PP1 address.

However, if a subroutine or jump address are not within the same page as the location from
where the jump is called , two “missing”- higher bits should be provided by writing to the
PCLATH register. It is illustrated in figure below as a jump to the subroutine PP2 address.

 55

Fig. 2-24 PCLATH Registers

In both cases, when the subroutine reaches instructions RETURN, RETLW or RETFIE (to return to the
main program), the microcontroller will simply continue program execution from where it left off
because the return address is pushed and saved onto the stack which, as mentioned, consists of 13-
bit registers.

Indirect addressing

In addition to direct addressing which is logical and clear by itself (it is sufficient to specify
address of some register to read its contents), this microcontroller is able to perform indirect
addressing by means of the INDF and FSR registers. It sometimes considerably facilitates program
writing. The whole procedure is enabled because the INDF register is not true one (physically does
not exist), but only specifies the register whose address is located in the FSR register. Because of
that, write or read from the INDF register actually means write or read from the register whose
address is located in the FSR register. In other words, registers’ addresses are specified in the FSR
register, and their contents are stored in the INDF register. The difference between direct and
indirect addressing is illustrated in the figure below:

 56

As seen, the problem with “missing addressing bits” is solved by “borrow” from another register.
This time, it is the seventh bit called IRP from the STATUS register.

Fig. 2-25 Direct and Indirect addressing

 57

Chapter 3: I/O Ports

Features and Function

One of the most important feature of the microcontroller is a number of input/output pins used for
connection with peripherals. In this case, there are in total of thirty-five general purpose I/O pins
available, which is quite enough for the most applications.

In order pins’ operation can match internal 8-bit organization, all of them are, similar to registers,
grouped into five so called ports denoted by A, B, C, D and E. All of them have several features in
common:

• For practical reasons, many I/O pins have two or three functions. In case any of these alternate

functions is currently active, that pin may not simultaneous ly use as a general purpose
input/output pin.

• Every port has its “satellite”, i.e. the corresponding TRIS register: TRISA, TRISB, TRISC etc.
which determines performance, but not the contents of the port bits.

By clearing some bit of the TRIS register (bit=0), the corresponding port pin is configured as
output. Similarly, by setting some bit of the TRIS register (bit=1), the corresponding port pin is
configured as input. This rule is easy to remember 0 = Output, 1 = Input.

Fig. 3-1 I/O Ports

 58

Port A and TRISA Register

Port A is an 8-bit wide, bidirectional port. Bits of the TRISA and ANSEL control the PORTA pins.
All portA pins act as digital inputs/outputs. Besides, five of them can also be analog inputs
(denoted as AN):

Fig. 3-2 Port A and TRISA Register

Similar to bits of the TRISA register which determine which of the pins will be configured as input
and which as output, the appropriate bits of the ANSEL register determine whether the pins will
act as analog inputs or digital inputs/outputs.

• RA0 = AN0 (determined by bit ANS0 of the ANSEL register)
• RA1 = AN1 (determined by bit ANS1 of the ANSEL register)
• RA2 = AN2 (determined by bit ANS2 of the ANSEL register)
• RA3 = AN3 (determined by bit ANS3 of the ANSEL register)
• RA5 = AN4 (determined by bit ANS4 of the ANSEL register)

Each bit of this port has an additional function related to some of built-in peripheral units. These
additional functions will be described in later chapters. This chapter covers only the RA0 pin’s
additional function since it is related to port A only. It is about the ULPWU unit.

ULPWU Unit

The microcontroller is commonly used in devices which have to operate periodically and,
completely independently using battery power supply. In such cases, minimal power consumption
is one of the priorities. Typical examples of such application are: thermometers, sensors for fire
detection and similar. It is known that a reduction in clock frequency reduces the power
consumption, so one of the most convenient solution on this problem is to slow clock down (use
32KHz quartz crystal instead of 20MHz).

 59

Setting the microcontroller to sleep mode is another
step in the same direction. However, even in case
both measures are applied, another problem arises. It
is about how to the microcontroller and set it to
normal mode. It is obviously necessary to have
external signal to change logic state on some of the
pins. Thus, the problem still exists... This signal must
be generated by additional electronics, which causes
higher power consumption of entire device...

The ideal solution would be the microcontroller
wakes up periodically by itself, which is not
impossible at all. The circuit which enables that is
shown in figure on the left.

The principle of operation is simple:

A pin is configured as output and logic one (1) is brought to it. That causes capacitor to be charged.
Immediately after that, the same pin is configured as input. The change of logic state enables an
interrupt and the microcontroller is set to Sleep mode. Afterwards, there is nothing else to be done
except for waiting for the capacitor to be discharged by the leakage current flowing out through
input pin. When it occurs, an interrupt takes place and the microcontroller continues with program
execution in normal mode. The whole sequence is repeated...

At first sight, this is a perfect solution. Only
at first sight...The problem is that all pins
able to cause interrupt in this way are digital
and have relatively large leakage current
when their voltage is not close to the limit
values Vdd (1) or Vss (0). In this case, the
capacitor is discharged for a short time since
the current amounts to several hundreds of
microamperes. That is why the ULPWU
circuit able to register slow voltage drop
with ultra low power consumption is
designed. Its output generates interrupt,
while its input is connected to one of the
microcontroller pins. You guess, it is the RA0 pin. Referring to schematic (R=200 ohms, C=1nF),
discharge time is approximately 30mS, while the total consumption of the microcontroller is 1000
times lower (several hundreds of nanoamperes).

 60

Port B and TRISB register

Port B is an 8-bit wide, bidirectional port. Bits of the TRISB register determine the function of its
pins.

Fig. 3-5 Port B and TRISB register

Similar to port A, a logic one (1) in the TRISB register configures the appropriate port pin as input
and vice versa. Besides, six pins on this port can act as analog inputs (AN). The bits of the
ANSELH register determine whether these pins act as analog inputs or digital inputs/outputs:

• RB0 = AN12 (determined by bit ANS12 of the ANSELH register)
• RB1 = AN10 (determined by bit ANS10 of the ANSELH register)
• RB2 = AN8 (determined by bit ANS8 of the ANSELH register)
• RB3 = AN9 (determined by bit ANS9 of the ANSELH register)
• RB4 = AN11 (determined by bit ANS11 of the ANSELH register)
• RB5 = AN13 (determined by bit ANS13 of the ANSELH register)

Each port B pin has an additional function related to some of built in peripheral units, which will
be explained in later chapters.

• All the port pins have built in pull-up resistor, which make them ideal for connection to the
push-buttons (keyboard), switches and optocouplers. In order to connect these resistors to the
microcontroller ports, the appropriate bit of the WPUB register should be set.*

Fig. 3-6 WPUB register

 61

Having a high level of resistance (several tens of kilo ohms), these “virtual” resistors do not affect
pins configured as outputs, but serves as an useful complement to inputs. As such, they are
connected to CMOS logic circuits’ inputs. Otherwise, they would act as if they are floating because
of their high input resistance.

Fig. 3-7 Pull-up resistors

* Apart from the bits of the WPUB register, there is another bit affecting pull-up resistor
installation. It is RBPU bit of the OPTION_REG. It is a general-purpose bit because it affects
installation of all port resistors.

• If enabled, each port B bit configured as input may cause an interrupt by change ing its
logic state. In order to enable pins to cause an interrupt, the appropriate bit of the IOCB
register should be set.

Fig. 3-8 IOCB register

Because of these features, the port B pins are commonly used for checking push-buttons on the
keyboard because they unerringly register any button press. Therefore, there is no need to “scan”
these inputs all the time.

 62

Fig. 3-9 Keyboard Example

When the X, Y and Z pins are configured as outputs set to logic one (1), it is only necessary to wait
for interrupt request which arrives upon any button press. By combining zeros and units on these
outputs it is checked which push-button is pressed.

Pin RB0/INT

The RB0/INT pin is a single “true” external interrupt source. It can be configured to react to signal
raising edge (zero-to-one transition) or signal falling edge (one-to-zero transition). The INTEDG
bit of the OPTION_REG register selects signal.

RB6 and RB7 pins

You have probably noticed that PIC16F887 microcontroller does not have any special pins for
programming (writing program to ROM). Because the ports pins available as general purpose I/O
pins during normal operation are used for that. It is actually about port B pins used for clock (RB6)
and data (RB7) transfer during program loading. In addition, it is necessary to apply power supply
voltage Vdd (5V) and Vss (0V) as well as voltage for FLASH memory programming Vpp (12-
14V). During programming, Vpp voltage is applied to the MCLR pin. All details concerning this
process as well as which one of these voltages is applied first are beside the point. The programmer
electronics is in charge of that. The point is that program can be loaded to the microcontroller even
upon it is soldered in the target device. Normally, the loaded program can be also changed in the
same way. This function is called ICSP (In-Circuit Serial Programming). It is necessary to plan
ahead when using it.

 63

It is not complicated at all! It is only necessary to install 4-pin connector in the target device so that
necessary programmer voltages may be applied to the microcontroller. In case these voltages
interfere with other device electronics, take care of breaking this connection (using resistors or
jumpers).

Concerning programmer, these voltages are applied to socket pins in which the microcontroller is
to be placed.

Port C and TRISC Register

Port C is an 8-bit wide, bidirectional port. Bits of the TRISC register determine the function of its
pins. Similar to other ports, a logic one (1) in the TRISC register configures the appropriate port
pin as input.

Fig. 3-12 Port C and TRISC Register

All additional functions of this port bits will be explained later.

 64

Port D and TRISD Register

Port D is an 8-bit wide, bidirectional port. Bits of the TRISD register determine the function of its
pins. A logic one (1) in the TRISD register configures the appropriate port pin as input.

Fig. 3-13 Port D and TRISD Register

Port E and TRISE Register

Port E is a 4-bit wide, bidirectional port. The TRISE register’s bits determine the function of its
pins. Similar to other ports, a logic one (1) in the TRISE register configures the appropriate port
pin as input. The exception is RE3 which is input only and its TRIS bit is always read as ‘1’.

Fig. 3-14 Port E and TRISE Register

Similar to ports A and B, three pins can be configured as analog inputs in this case. The ANSELH
register bits determine whether a pin will act as analog input (AN) or digital input/output:

• RE0 = AN5 (determined by bit ANS5 of the ANSELregister)
• RE1 = AN6 (determined by bit ANS6 of the ANSELregister)
• RE2 = AN7 (determined by bit ANS7 of the ANSELregister)

 65

ANSEL and ANSELH Registers

The ANSEL and ANSELH registers are used to configure the input mode of an I/O pin to analog
or digital.

Fig. 3-15 ANSEL and ANSELH Registers

The rule is:
To configure a pin as analog input, the appropriate bit of the ANSEL or ANSELH registers must
be set (1). To configure pin as digital input/output, the appropriate bit must be cleared (0).
The state of the ANSEL bits do not affect on digital output functions. Besides, the result of any
attempt to read some port pin configured as analog input will be 0.

Fig. 3-16 ANSEL and ANSELH Configuration

 66

In Short:

You will probably never write some program which does not use ports so the effort you make to
understand their operation will surely pay off. However, they are probably the simplest modules
within the microcontroller. This is how they are used:

• When designing a device, select port through which the microcontroller will communicate to
peripheral environment. If you use only digital inputs/outputs, select any port you want. If
you use some of analog inputs, select some of the ports supporting such pins configuration
(AN0-AN13).

• Each port pin may be configured as input or output. Bits of the TRISA, TRISB, TRISC,
TRISD and TRISE registers determine how the appropriate ports pins- PORTA, PORTB,
PORTC, PORTD and PORTE will act. Simply...

• If you use some of analog inputs, set the appropriate bits of the ANSEL and ANSELH
registers at the beginning of the program.

• If you use switches and push-buttons as input signal source, connect them to port B pins
because they have pull-up resistors. The use of these resistors is enabled by the RBPU bit of
the OPTION_REG register, whereas the installation of individual resistors is enabled by bits
of the WPUB register.

• It is usually necessary to react as soon as input pins change their logic state. How ever, it is
not necessary to write a program for changing pins' logic state. It is far simpler to connect
such inputs to the PORTB pins and enable interrupt on every voltage change. Bits of the
registers IOCOB and INTCON are in charge of that.

 67

Chapter 4: Timers

The timers of PIC16F887 microcontroller may be briefly described in only one sentence. There are
three completely independent timers/counters marked as TMR0, TMR1 and TMR2. But that’s not
all so simple...

Timer TMR0

The timer TMR0 has a wide range of applications in practice. Only few programs do not use it in
some way. Even simple, it is very convenient and easy to use for writing program or subroutine for
generating pulses of arbitrary duration, time measurement or counting external pulses (events)
almost with no limitations.

The timer TMR0 module is an 8-bit timer/counter with the following features:

• 8-bit timer/counter register
• 8-bit prescaler (shared with Watchdog timer)
• Programmable internal or external clock source
• Interrupt on overflow
• Programmable external clock edge selection

Figure below represents the timer TMR0 schematic with all bits which determine its operation.
These bits are stored in the OPTION_REG register.

Fig. 4-1 Timer TMR0

 68

OPTION_REG Register

Fig. 4-2 OPTION_REG Register

RBPU - PORTB Pull-up enable bit

• 1 - PORTB pull-up resistors are disabled.
• 2 - PORTB pins can be connected to pull-up resistors.

INTEDG - Interrupt Edge Select bit

• 1 - Interrupt on rising edge of INT pin (0-1).
• 2 - Interrupt on falling edge of INT pin (1-0).

T0CS - TMR0 Clock Select bit

• 1 - Pulses are brought to TMR0 timer/counter input through the RA4 pin.
• 2 - Internal cycle clock (Fosc/4).

T0SE - TMR0 Source Edge Select bit

• 1 - Increment on high-to-low transition on TMR0 pin.
• 2 - Increment on low-to-high transition on TMR0 pin.

PSA - Prescaler Assignment bit

• 1 - Prescaler is assigned to the WDT.
• 2 - Prescaler is assigned to the TMR0 timer/counter.

PS2, PS1, PS0 - Prescaler Rate Select bit

• Prescaler rate is adjusted by combining these bits.
As seen in the table, the same combination of bits gives different prescaler rate for
the timer/counter and watch-dog timer respectively.

PS2 PS1 PS0 TMR0 WDT
0 0 0 1:2 1:1

0 0 1 1:4 1:2

0 1 0 1:8 1:4

0 1 1 1:16 1:8

1 0 0 1:32 1:16

1 0 1 1:64 1:32

1 1 0 1:128 1:64

1 1 1 1:256 1:128

 69

The function of the PSA bit is shown in figures below:

Fig. 4-3 The function of the PSA bit 0

Fig. 4-4 The function of the PSA bit 1

As seen, the logic state of the PSA bit determines whether the prescaler is to be assigned to the
timer/counter or watch-dog timer.

 70

In addition to above mentioned, this is also useful to know:

• When the prescaler is assigned to the timer/counter, any write to the TMR0 register will clear
the prescaler.

• When the prescaler is assigned to watch-dog timer, a CLRWDT instruction will clear both
the prescaler and WDT.

• When writing to the TMR0 register used as a timer, will not cause the pulse counting to start
immediately, but with two instruction cycles delay. In accordance to that, it is necessary to
adjust the value written to the TMR0 register.

• When the microcontroller is setup in sleep mode, the oscillator is turned off. Overflow cannot
occur since there are no pulses to count. That is why the TMR0 overflow interrupt cannot
wake up the processor from Sleep mode.

• When used as external clock counter without prescaler, a minimal pulse length or a pause
between two pulses must be 2 Tosc + 20 nS. Tosc is oscillator signal period.

• When used as external clock counter with prescaler, a minimal pulse length or a pause
between two pulses is 10nS.

• 8-bit prescaler register is not available to the user, which means that it cannot be directly read
or written.

• When changing the prescaler assignment from the TMR0 to the watch-dog timer, the
following instruction sequence must be executed in order to avoid reset:

BANKSEL TMR0
CLRWDT ;CLEAR WDT
CLRF TMR0 ;CLEAR TMR0 AND PRESCALER
BANKSEL OPTION_REG
BSF OPTION_REG,PSA ;PRESCALER IS ASSIGNED TO THE WDT
CLRWDT ;CLEAR WDT
MOVLW b’11111000’ ;SELECT BITS PS2,PS1,PS0 AND CLEAR
ANDWF OPTION_REG,W ;THEM BY INSTRUCTION “LOGICAL AND”
IORLW b’00000101’ ;BITS PS2, PS1, AND PS0 SET
MOVWF OPTION_REG ;PRESCALER RATE TO 1:32

• Otherwise, when changing the prescaler assignment from the WDT to the TMR0, the
following instruction sequence must be executed:

BANKSEL TMR0
CLRWDT ;CLEAR WDT AND PRESCALER
BANKSEL OPTION_REG
MOVLW b’11110000’ ;SELECT ONLY BITS PSA,PS2,PS1,PS0
ANDWF OPTION_REG,W ;CLEAR THEM AFTERWARDS BY INSTRUCTION
 ;“LOGICAL AND”
IORLW b’00000011’ ;PRESCALER RATE IS 1:16
MOVWF OPTION_REG

 71

In order to use TMR0 properly, it is necessary:

To select mode:

• Timer mode is selected by the T0CS bit of the OPTION_REG register, (T0CS: 0=timer,
1=counter).

• When used, the prescaler should be assigned to the timer/counter by clearing the PSA bit of
the OPTION_REG register. The prescaler rate is set by using the PS2-PS0 bits of the same
register.

• When using interrupt, the GIE and TMR0IE bits of the INTCON register should be set.

To measure time:

• Reset the TMR0 register or write some well-known value to it.
• Elapsed time (in microseconds when using quartz 4MHz) is measured by reading the TMR0

register.
• The flag bit TMR0IF of the INTCON register is automatically set every time the TMR0

register overflows. If enabled, an interrupt occurs.

To count pulses:

• The polarity of pulses are to be counted is selected on the RA4 pin are selected by the TOSE
bit of the OPTION register (T0SE: 0=positive, 1=negative pulses).

• Number of pulses may be read from the TMR0 register. The prescaler and interrupt are used
in the same way as in timer mode.

Timer TMR1

Timer TMR1 module is a 16-bit timer/counter, which means that it consists of two registers
(TMR1L and TMR1H). Because of that, it can count up 65.535 pulses in a single cycle, i.e. before
the counting starts from zero.

Fig. 4-5 Timer TMR1

Similar to the timer TMR0, these registers can be read or written at any moment. In case overflow
occurs, an interrupt is generated.

The timer TMR1 module may operate in one of two basic modes- as a timer or a counter.
However, unlike the timer TMR0, each of these modules has additional functions.

 72

Bits of the T1CON register are in control of the operation of the timer TMR1.

Fig. 4-6 Timer TMR1 Overview

Timer TMR1 Prescaler

Timer TMR1 has an completely separate prescaler which allows 1, 2, 4 or 8 divisions of the clock
input. The prescaler is not directly readable or writable. However, the prescaler counter is
automatically cleared upon write to the TMR1H or TMR1L register.

Timer TMR1 Oscillator

RC0/T1OSO and RC1/T1OSI pins are used to register pulses coming from peripheral electronics,
but also have additional function. As seen in figure, they are simultaneously configured as both
input (pin RC1) and output (pin RC0) of the additional LP quartz oscillator (low power).
This additional circuit is primarily designed for operating at low frequencies (up to 200 KHz),
more precisely, for using 32,768 KHz quartz crystal. Such crystal is used in quartz watches
because it is easy to obtain one-second-long pulses by simple dividing this frequency.
Since this oscillator does not depend on internal clock, it can operate even in sleep mode. It is
enabled by setting the T1OSCEN control bit of the T1CON register. The user must provide a
software time delay (a few milliseconds) to ensure proper oscillator start-up.

Table below shows recommended values of capacitor which is
along with quartz part of the oscillator. These values do not have
to be exact. However, the general rule is: the higher capacitor
capacity the higher stability, which at the same time prolongs
time needed for the stabilization of oscillator

 73

Timer TMR1 Gate

Timer 1 gate source is software configurable to be the T1G pin or the output of comparator C2.
This gate allows the timer to directly time external events using the logic state on the T1G pin or
analog events using the comparator C2 output. Refer to figure above. In order to time a signal
duration it is sufficient to enable such gate and count pulses having passed through it.

TMR1 in timer mode

In order to select this mode, it is necessary to clear the TMR1CS bit. After that, the 16-bit register
will be incremented on every pulse coming from the internal oscillator. In case 4MHz quartz
crystal is in use, it will be incremented every microsecond.

In this mode, the T1SYNC bit does not affect the timer because it counts internal clock pulses.
Since the whole electronics uses these pulses, there is no need for synchronization.

Fig. 4-8 TMR1 in timer mode

The microcontroller’s clock oscillator does not run during sleep mode so the timer register
overflow cannot cause any interrupt.

Timer TMR1 Oscillator

The power consumption of microcontroller is reduced to the lowest level in Sleep mode. The point
is to stop oscillator. Anyway, it is easy to set the timer in this mode- by writing SLEEP instruction
to the program. A problem occurs when it is necessary to wake up the microcontroller because
only interrupt can do that. Since the microcontroller “sleeps”, an interrupt must be triggered by
external electronics. All gets incredibly complicated if it is necessary the ‘wake up’ occurs at
regular time intervals...

 74

Fig. 4-9 Timer TMR1 Oscillator

In order to solve this problem, a completely independent Low Power quartz oscillator able to
operate in sleep mode is built in the PIC16F887 microcontroller. Simply, what previously has been
separate circuit, it is now built in the microcontroller and assigned to the timer TMR1. The
oscillator is enabled by setting the T1OSCEN bit of the T1CON register. After that, the TMR1CS
bit of the same register is used to determine that the timer TMR1 uses pulse sequence from that
oscillator. Further procedure depends on the user’s needs.

• The signal from this quartz oscillator is synchronized with the microcontroller clock by
clearing the T1SYNC bit. In that case, the timer cannot operate in sleep mode. You wonder
why? Because the circuit for synchronization uses the clock of microcontroller!

• The TMR1 register overflow interrupt may be enabled. Such interrupt will occur in sleep
mode as well.

TMR1 in counter mode

Timer TMR1 starts to operate as a counter by setting the TMR1CS bit. It means that the timer
TMR1 is incremented on the rising edge of the external clock input T1CKI. Besides, if control bit
T1SYNC of the T1CON register is cleared, the external clock inputs will be synchronized on their
way to the TMR1 register. In other words, the timer TMR1 is synchronized to the microcontroller
system clock and called a synchronous counter therefore.

When the microcontroller ,operating in this way, is set in sleep mode, the TMR1H and TMR1L
timer registers are not incremented even though clock pulses appear on input pins. Simply, since
the microcontroller system clock does not run in this mode, there are no clock inputs to use for
synchronization. However, the prescaler will continue to run if there are clock pulses on the pins
since it is just a simple frequency divider.

 75

Fig. 4-10 TMR1 in counter mode

This counter registers a logic one
(1) on input pins. It is important to
know that at least one falling edge
must be registered prior to the first
increment on rising edge. Refer to
figure on the left. The arrows in
figure denote counter increments.

T1CON Register

Fig. 4-12 T1CON Register

T1GINV - Timer1 Gate Invert bit acts as logic state inverter on the T1G pin gate or the comparator
C2 output (C2OUT) gate. It enables the timer to mea sure time while gate is high or low.

• 1 - Timer 1 counts when the pin T1G or bit C2OUT gate is high (1).
• 0 - Timer 1 counts when the pin T1G or bit C2OUT gate is low (0).
•

TMR1GE - Timer1 Gate Enable bit determines whether the pin T1G or comparator C2 output
(C2OUT) gate will be active or not. This bit is functional only in case the timer TMR1 is on (bit
TMR1ON = 1). Otherwise, this bit is ignored.

• 1 Timer TMR1 is on only if timer 1 gate is not active.
• 0 Gate does not affect the timer TMR1.

 76

T1CKPS1, T1CKPS0 - Timer1 Input Clock Prescale Select bits determine rate of the prescaler
assigned to the timer TMR1.

T1CKPS1 T1CKPS0 Prescaler Rate

0 0 1:1

0 1 1:2

1 0 1:4

1 1 1:8

T1OSCEN - LP Oscillator Enable Control bit

• 1 - LP oscillator is enabled for timer TMR1 clock (oscillator with low power consumption
and frequency 32.768 kHz).

• 0 - LP oscillator is off.

T1SYNC - Timer1 External Clock Input Synchronization Control bit enables synchronization of
the LP oscillator input or T1CKI pin input with the microcontroller internal clock. When counting
pulses from the local clock source (bit TMR1CS = 0), this bit is ignored.

• 1 - Do not synchronize external clock input.
• 0 - Synchronize external clock input.

TMR1CS - Timer TMR1 Clock Source Select bit

• 1 - Counts pulses on the T1CKI pin (on the rising edge 0-1)
• 0 - Counts pulses of the internal clock of microcontroller.

TMR1ON - Timer1 On bit

• 1 - Enables Timer TMR1.
• 0 - Stops Timer TMR1.

In order to use the timer TMR1 properly, it is necessary to perform the following:

• Since it is not possible to turn off the prescaler, its rate should be adjusted by using bits
T1CKPS1 and T1CKPS0 of the register T1CON (Refer to the table).

• After that, the mode should be selected by the TMR1CS bit of the same register (TMR1CS:
0= the clock source is quartz oscillator, 1= the clock source is supplied externally).

• By setting the T1OSCEN bit of the same register, the timer TMR1 is turned on and the
TMR1H and TMR1L registers are incremented on every clock input. Counting stops by
clearing this bit.

• The prescaler is cleared by clearing or writing the counter registers.
• By filling both timer registers, the flag TMR1IF is set and counting starts from zero.

 77

Timer TMR2

Timer TMR2 module is an 8-bit timer which operates in a bit specific way.

Fig. 4-13 Timer TMR2

The pulses from quartz oscillator first pass through the prescaler whose rate may be changed by
combining the T2CKPS1 and T2CKPS0 bits. The output of the prescaler is then used to increment
the TMR2 register starting from 00h. The values of TMR2 and PR2 are constantly compared and
the TMR2 register keeps on being incremented until it matches the value in PR2. When a match
occurs, the TMR2 register is automatically cleared to 00h. The timer TMR2 postscaler is
incremented and its output is used to generate an interrupt if it is enabled.

The TMR2 and PR2 registers are both fully readable and writable. Counting may be stopped by
clearing the TMR2ON bit, which contributes to power saving.

As a special option, the moment of TMR2 reset may be also used to determine synchronous serial
communication baud rate.

The timer TMR2 is controlled by several bits of the T2CON register.

Fig. 4-14 T2CON register

 78

TOUTPS3 - TOUTPS0 - Timer2 Output Postcaler Select bits are used to determine postscaler rate
according to the following table:

TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 Prescaler Rate

0 0 0 0 1:1

0 0 0 1 1:2

0 0 1 0 1:3

0 0 1 1 1:4

0 1 0 0 1:5

0 1 0 1 1:6

0 1 1 0 1:7

0 1 1 1 1:8

1 0 0 0 1:9

1 0 0 1 1:10

1 0 1 0 1:11

1 0 1 1 1:12

1 1 0 0 1:13

1 1 0 1 1:14

1 1 1 0 1:15

1 1 1 1 1:16

TMR2ON - Timer2 On bit turns the timer TMR2 on.

• 1 - Timer T2 is on.
• 0 - Timer T2 is off.

T2CKPS1, T2CKPS0 - Timer2 Clock Prescale bits determine prescaler rate:

T2CKPS1 T2CKPS0 Prescaler Rate

0 0 1:1

0 1 1:4

1 x 1:16

When using the TMR2 timer, one should know several specific details that have to do with its
registers:

• Upon the power is on, the PR2 register contains the value FFh.
• Both prescaler and postscaler are cleared by writing to the TMR2 register.
• Both prescaler and postscaler are cleared by writing to the T2CON register.
• On any reset - you guess, both prescaler and postscaler are cleared.

 79

Chapter 5: CCP Modules

The abbreviation CCP stands for Capture/Compare/PWM.

The Capture/Compare/PWM module is a peripheral which allows the user to time and control
different events.

In Capture Mode, the peripheral allows timing of duration of an event. This circuit gives insight
into the current state of some register which constantly changes its value. In this case, it is the timer
TMR1 register.

The Compare Mode compares values contained in two registers at some point. One of them is the
timer TMR1 register. This circuit also allows the user to trigger an external event when a
predetermined amount of time has expired.

PWM - Pulse Width Modulation can generate signals of varying frequency and duty cycle.

The PIC16F887 microcontroller has two such modules - CCP1 and CCP2.

Both of them are identical in normal mode, with the exception of the Enhanced PWM features
available on CCP1 only. That is why this chapter describes the CCP1 module in detail. Concerning
CCP2, only the features distinguishing it from CCP1 will be covered.

Complicated? Believe me, it is still not! All this is only a simplified explanation on their operation.
Everything is much more complicated in practice because these modules can operate in many
different modes. Try to analyze their operation on the basis of the tables describing bit functions.
Do you understand now what all this is about? So save your nerves and follow a well-intentioned
advice: if you use any CCP module, first select the mode you need, analyze the appropriate figure
and then start changing bits of the registers or else...

CCP1 Module

A central part of this circuit is a 16-bit register CCPR1 which consists of the CCPR1L and
CCPR1H registers. It is used for capturing or comparing with binary number stored in the timer
register TMR1 (TMR1H and TMR1L).

Fig. 5-1 CCP1 Module

In Compare mode, if enabled by software, the timer TMR1 reset may occur on match. Besides, the
CCP1 module can generate PWM signals of varying frequency and duty cycle.

Bits of the CCP1CON register controls the CCP1 module.

 80

CCP1 in Capture mode

In this mode, the timer register TMR1 (consisting of TMR1H and TMR1L) is copied to the CCP1
register (consisting of CCPR1H and CCPR1L) in the following situations:

• Every falling edge (1 » 0) on the RC2/CCP1 pin.
• Every rising edge (0 » 1) on the RC2/CCP1 pin.
• Every 4th rising edge (0 » 1) on the RC2/CCP1 pin.
• Every 16th rising edge (0 » 1) on the RC2/CCP1 pin.

The combination of four bits (CCP1M3 - CCP1M0) of the control register determines which of
these events will trigger 16-bit data transfer. In addition, the following conditions must be met:

• RC2/CCP1 pin must be configured as input.
• TMR1 module must operate as timer or synchronous counter.

Fig. 5-2 CCP1 in Capture mode

The flag bit CCP1IF is set when a capture is made. If it happens and if the CCP1IE bit of the PIE
register is set then an interrupt occurs.

When the Capture mode is changed, an undesirable capture interrupt may be generated. In order to
avoid that, both a bit enabling CCP1IE interrupt and flag bit CCP1IF should be cleared prior to any
change occurs in the control register.

Undesirable interrupt may be also generated by switching from one capture prescaler to another.
To avoid this, the CCP1 module should be temporarily switched off before changing the prescaler.

 81

The following program sequence is recommended:

BANKESEL CCP1CON
CLRF CCP1CON ;CONTROL REGISTER IS CLEARED
 ;CCP1 MODULE IS OFF
MOVLW XX ;NEW PRESCALER MODE IS SELECTED
MOVWF CCP1CON ;NEW VALUE IS LOADED TO THE CONTROL REGISTER
 ;CCP1 MODULE IS SIMULTANEOUSLY SWITCHED ON

CCP1 in Compare mode

In this mode, the value in the CCP1 register is constantly compared to the value in the timer
register TMR1. When a match occurs, the output pin RC2/CCP1 logic state may be changed,
which depends on the state of bits in control register (CCP1M3 - CCP1M0). The flag-bit CCP1IF
will be simultaneously set.

Fig. 5-3 CCP1 in Compare mode

To setup CCP1 module to operate in this mode, two conditions must be met:

• Pin RC2/CCP1 must be configured as output.
• Timer TMR1 must be synchronized with internal clock.

CCP1 in PWM mode

Signals of varying frequency and duty cycle have a wide application in automatic. A typical
example is a power control circuit whose simple way of operation is shown in figure below. If a
logic zero (0) represents switch-off and logic one (1) represents switchon, power the load obtains
will be directly proportional to the pulse duration. This ratio is often called Duty Cycle.

 82

Fig. 5-4 CCP1 in PWM mode

Another example, common in practice, is the usage of PWM signals in the circuit for generating
signals of arbitrary waveform, for example, sinus waveform. See figure below:

Fig. 5-5 CCP1 in PWM mode with filtration

Devices which operate in this way are often used in practice as switching regulators which control
the operation of motors (speed, acceleration, deceleration etc.).

 83

Fig. 5-6 PWM module

The figure above shows block diagram of the CCP1 module setup in PWM mode. In order to
generate a pulse of arbitrary form on its output pin, it is necessary to determine only two values-
pulse frequency and duration.

PWM Period

The output pulse period (T) is specified by the PR2 register of the timer TMR2. The PWM period
can be calculated using the following equation:

PWM Period(T) = (PR2 +1) * 4Tosc * TMR2 Prescale Value

If the PWM Period (T) is known then, it is easy to determine the signal frequency F because these
two values are related by equation F=1/T.

 84

PWM Duty Cycle

The PWM duty cycle is specified by using in total of 10 bits: eight MSbs found in the CCPR1L
register and two additional LSbs found in the CCP1CON register (DC1B1 and DC1B0). The result
is 10-bit number contained in the formula:

Pulse Width = (CCPR1L,DC1B1,DC1B0) * Tosc * TMR2 Prescale Value

The following table shows how to generate PWM signals of varying frequency if the
microcontroller uses 20 MHz quartz-crystal (Tosc=50nS).

Frequency [KHz] 1.22 4.88 19.53 78.12 156.3 208.3

TMR2 Prescaler 16 4 1 1 1 1

PR2 Register FFh FFh FFh 3Fh 1Fh 17h

At last, two notes:

• Output pin will be constantly set in case the pulse width is by negligence determined to be
larger than PWM period.

• In this application, the timer TMR2 postscaler cannot be used for generating longer PWM
periods.

PWM Resolution

PWM signal is nothing but the pulse sequence with varying duty cycle. For one specified
frequency (number of pulses per second), there is a limited number of duty cycle combinations.
That number is called resolution measured by bits. For example, a 10-bit resolution will result in
1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles etc.
Concerning this microcontroller, the resolution is specified by the PR2 register. The maximal value
is obtained by writing number FFh.

PWM frequencies and resolutions (Fosc = 20MHz):

PWM
Frequency

1.22kHz 4.88kHz 19.53kHz 78.12kHz 156.3kHz 208.3kHz

Timer Prescale 16 4 1 1 1 1

PR2 Value FFh FFh FFh 3Fh 1Fh 17h

Maximum
Resolution

10 10 10 8 7 6

PWM frequencies and resolutions (Fosc = 8MHz):

PWM
Frequency

1.22kHz 4.90kHz 19.61kHz 76.92kHz 153.85kHz 200.0kHz

Timer Prescale 16 4 1 1 1 1

PR2 Value 65h 65h 65h 19h 0Ch 09h

Maximum
Resolution

8 8 8 6 5 5

 85

CCP1CON Register

Fig. 5-8 CCP1CON Register

P1M1, P1M0 - PWM Output Configuration bits - In all modes, excepting PWM, the P1A pin is
Capture/Compare module input. P1B, P1C and P1D pins act as input/output port D pins. In PWM
mode, these bits affect CCP1 module as shown in the table below:

P1M1 P1M0 Mode

PWM with single output
0 0 Pin P1A outputs modulated signal.

Pins P1B, P1C and P1D are port D input/output

Full Bridge - Forward configuration

0 1 Pin P1D outputs modulated signal
Pin P1A is active

Pins P1B and P1C are inactive

Half Bridge configuration
1 0 Pins P1A and P1B output modulated signal

PinsP1C and P1D are port D input/output

Full Bridge - Reverse configuration

1 1 Pin P1B outputs modulated signal
Pin P1C is active

Pins P1A and P1D are inactive

DC1B1, DC1B0 - PWM Duty Cycle Least Significant bits - are only used in PWM mode in which
they represent two least significant bits of a 10-bit number. This number determines PWM signal’s
duty cycle. The rest of bits (8 in total) are stored in the CCPR1L register.

 86

CCP1M3 - CCP1M0 - CCP1 Mode Select bits determine the mode of the CCP1 module.

CCP1M3 CCP1M2 CCP1M1 CCP1M0 Mode

0 0 0 0 Module is disabled (reset)

0 0 0 1 Unused

Compare mode
0 0 1 0

CCP1IF bit is set on match

0 0 1 1 Unused

Capture mode
0 1 0 0

Every falling edge on the CCP1 pin

Capture mode
0 1 0 1

Every rising edge on the CCP1 pin

Capture mode
0 1 1 0 Every 4th rising edge on the CCP1

pin

Capture mode
0 1 1 1 Every 16th rising edge on the CCP1

pin

Compare mode
1 0 0 0 Output and CCP1IF bit are set on

match

Compare mode
1 0 0 1 Output is cleared and CCP1IF bit is

set on match

Compare mode
1 0 1 0 Interrupt request arrives and bit

CCP1IF is set on match

Compare mode
1 0 1 1 Bit CCP1IF is set and timers 1 or 2

registers are cleared

PWM mode
1 1 0 0 Pins P1A and P1C are active-high

Pins P1B and P1D are active-high

PWM mode
1 1 0 1 Pins P1A and P1C are active-high

Pins P1B and P1D are active-low

PWM mode
1 1 1 0 Pins P1A and P1C are active-low

Pins P1B and P1D are active-high

PWM mode
1 1 1 1 Pins P1A and P1C are active-low

Pins P1B and P1D are active-low

 87

CCP2 Module

Excluding different names of registers and bits, this module is a very good copy of CCP1 module
setup in normal mode (previously discussed). There is only one true difference between their
modes when CCP2 operates in Compare mode.

That difference refers to the timer T1 reset signal. Namely, at the moment the values of the TMR1
and CCPR2 registers match and if A/D converter is enabled, at the timer T1 reset signal will
automatically start A/D conversion.

Fig. 5-9 CCP2 Module

Similar to the pervious module, this circuit is under control of the bits of the control register. This
time, it is the CCP2CON register.

CCP2CON Register

Fig. 5-10 CCP2CON Register

DC2B1, DC2B0 - PWM Duty Cycle Least Significant bits - are only used in PWM mode
representing two least significant bits of a 10-bit number. This number determines PWM signal’s
duty cycle. The rest of bits (8 in total) are stored in the CCPR2L register.

 88

CCP2M3 - CCP2M0 - CCP2 Mode Select bits select CCP2 mode.

CCP2M3 CCP2M2 CCP2M1 CCP2M0 Mode

0 0 0 0 Module is disabled (reset)

0 0 0 1 Unused

0 0 1 0 Unused

0 0 1 1 Unused

Capture mode
0 1 0 0

Every falling edge on the CCP2 pin

Capture mode
0 1 0 1

Every raising edge on the CCP2 pin

Capture mode
0 1 1 0 Every 4th rising edge on the CCP2

pin

Capture mode
0 1 1 1 Every 16th rising edge on the CCP2

pin

Compare mode
1 0 0 0 Output and CCP2IF bit are set on

match

Compare mode
1 0 0 1 Output is cleared and CCP2IF bit is

set on match

Compare mode

1 0 1 0 Interrupt is generated, CCP2IF bit is
set and CCP2 pin is unaffected on

match

Compare mode

1 0 1 1
CCP2IF bit is set, Timer 1 registers

are cleared, A/D conversion is
started if the A/D converter is on on

match

1 1 x x PWM mode

In short: Setup CCP1 module for PWM operation

• In order to setup the CCP module for PWM operation, the following steps should be taken:

• Disable the CCP1 output pin. It should be configured as input.
• Set the PWM period by loading the PR2 register.
• Configure the CCP module for the PWM mode by combining bits of the CCP1CON

register.
• Set the PWM signal’s duty cycle by loading the CCPR1L register and using bits DC1B1

and DC1B0 of the CCP1CON register.
• Configure and start timer TMR2:

 89

o Clear the TMR2IF interrupt flag bit of the PIR1 register.
o Set the timer TMR2 prescale value by loading bits T2CKPS1 and T2CKPS0 of the

T2CON register.
o Start the timer TMR2 by setting the TMR2ON bit of the T2CON register.

• Enable PWM output pins after one PWM cycle has been finished:
o Wait for the timer TMR2 overflow (TMR2IF bit of the PIR1register is set).
o Configure the appropriate pin as output by clearing bit of the TRIS register.

CCP1 in Enhanced Mode

The enhanced mode is available on CCP1 only. Basically, this module does not differ from the one
previously described and enhancement refers to transmission of PWM signal to the output pins.
Why is it so important? Because the microcontrollers are more and more used in control systems
for electric motors. These devices are not described here, but if you ever have had a chance to work
on development of similar devices, you will recognize Numerous elements which until quite
recently have been used as external ones. Normally, all these elements are now integrated into the
microcontroller and can operate in several different modes.

Single Output PWM Mode

This mode is enabled only in case the P1M1 and P1M0 bits of the CCP1CON register are cleared.
In that case, there is only one PWM signal which can be simultaneously available on maximum
four different output pins. Besides, PWM signal may appear in basic or inverted waveform. Signal
distribution is determined by the bits of the PSTRCON register, while its polarity is determined by
the CCP1M1 and CCP1M0 bits of the CCP1CON register.

When inverted output is in use, the pins are low-active and pulses having the same waveform are
always generated in pair: on the P1A and P1C pins and P1B and P1D pins, respectively.

Fig. 5-11 Single Output PWM Mode

 90

Half-Bridge Mode

In this mode, the PWM signal is output on the P1A pin, while at the same time the complementary
PWM signal is output on the P1B pin. Such pulses activate MOSFET drivers in Half-Bridge mode
which enable/disable current flow through device.

Fig. 5-12 Half-Bridge Mode

Concerning this circuit, it is very dangerous to switch on both MOSFET drivers simultaneously.
The short circuit caused in that moment will be fatal. In order to avoid that, it is necessary to
provide a short delay between switching drivers on and off. This delay is marked as “td” in figure
below. The problem is solved by using the PDC0-PDC6 bits of the PWM1CON register.

 91

As shown in figure, the same mode can be used to activate MOSFET drivers in Full Bridge:

Fig. 5-14 Activate MOSFET drivers

Full-Bridge Mode

In Full-Bridge mode, all four pins are used as outputs. In practice, this mode is commonly used to
run motor, which provides simple and complete control of speed and rotation direction. There are
two such configurations: Full Bridge-Forward and Full Bridge-Reverse.

Fig. 5-15 Full-Bridge Mode

 92

Full Bridge - Forward Configuration

In Forward mode the following occurs:

Logic one (1) appears on the P1A pin (pin is high-active).

• Pulse sequence appears on the P1D pin.
• Logic zero (0) appears on the P1B and P1C pins (pins are low-active).
• Figure below shows the state of the P1A-P1D pins during one full PWM cycle.

Full Bridge - Reverse Configuration

The same occurs in Reverse mode, except of the pins functions:

• Logic one (1) appears on the P1C pin (pin is active-high).
• Pulse sequence appears on the P1B pin.
• Logic zero (0) appears on the P1A and P1D pins (pins are active-low).

 93

PWM1CON Register STRC PWM Restart Enable bit
• 1 - Upon auto-shutdown, the PWM module is automatically reset, while the ECCPASE bit

of the ECCPAS register is cleared.
• 0 - In order to restart PWM module upon auto-shutdown, the ECCPASE bit must be cleared

in software.

PDC6 - PDC0 - PWM Delay Count bits. 7-digit binary number determines the number of
instruction cycles (4*Tosc) added as time delay during the activation of PWM output pins.

Fig. 5-18 PWM1CON Register

PSTRCON Register

STRSYNC - Steering Sync bit determines the moment of PWM pulse steering:

• 1 - Steering occurs upon the PSTRCON has been changed, but only if a PWM waveform is
completed.

• 0 - Steering occurs upon the PSTRCON register has been changed. The PWM signal on
output pin is immediately changed with no regard to whether the previous cycle is
completed or not. This operation is useful when it is needed to immediately remove a PWM
signal from the pin.

STRD - Steering Enable bit D determines the P1D pin function.

• 1 - P1D pin has the PWM waveform with polarity controlled by the CCP1M0 and CCP1M1
bits.

• 0 - Pin is configured as general port D input/output.

STRC Steering Enable bit C determines the P1C pin function.

• 1 - P1C pin has the PWM waveform with polarity controlled by the CCP1M0 and CCP1M1
bits.

• 0 - Pin is configured as general port D input/output.

STRB - Steering Enable bit B determines the P1B pin function.

• 1 - P1B pin has the PWM waveform with polarity controlled by the CCP1M0 and CCP1M1
bits.

• 0 - Pin is configured as general port D input/output.

STRA - Steering Enable bit A determines the P1A pin function.

• 1 - P1D pin has the PWM waveform with polarity controlled by the CCP1M0 and CCP1M1
bits.

• 0 - Pin is configured as general port Ainput/output.

 94

ECCPAS Register

Fig. 5-19 ECCPAS Register

ECCPASE - ECCP Auto-Shutdown Event Status bit indicates whether shut-down of CCP
module has occurred (Shutdown state):

1 - CCP module is in Shutdown state.
0 - CCP module operates normally.

ECCPAS2 - ECCPAS0 - ECCP Auto-Shutdown Source Select bits select auto shutdown
source:

ECCPAS2 ECCPAS1 ECCPAS0 Shutdown state source
0 0 0 Shutdown state disabled

0 0 1
Comparator C1 output

change

0 1 0
Comparator C2 output

change

0 1 1
Comparator C1 or C2

output change

1 0 0
Logic zero (0) on INT

pin

1 0 1
Logic zero (0) on INT
pin or comparator C1

output change

1 1 0
Logic zero (0) on INT
pin or comparator C2

output change

1 1 1
Logic zero (0) on INT

pin or comparator C1 or
C2 output change

 95

PSSAC1, PSSAC0 - Pins P1A, P1C Shutdown State Control bits define logic state on output
pins P1A and P1C when CCP module is in shutdown state.

PSSAC1 PSSAC0 Pins logic state

0 0 0

0 1 1

1 X High impedance (Tri-state)

PSSBD1, PSSBD0 - Pins P1B, P1D Shutdown State Control bits define logic state on output
pins P1B and P1D when CCP module is in shutdown state.

PSSBD1 PSSBD0 Pins logic state

0 0 0

0 1 1

1 X High impedance (Tri-state)

 96

Chapter 6: Serial Communication Modules

EUSART

Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a
serial I/O communication peripheral. It is also known as Serial Communications Interface (SCI). It
contains all clock generators, shift registers and data buffers necessary to perform an input or
output serial data transfer independently of device program execution. As its name tells, apart from
the usage of clock for synchronization, this module can also establish asynchronous connection,
which makes it irreplaceable in some applications.

For example, in case it is difficult or impossible to provide special channels for clock and data
transfer (for example, radio remote control or infrared), the EUSART module imposes itself as
convenient solution.

The EUSART system integrated into the PIC16F887 microcontroller has the following features:

• Full-duplex asynchronous transmit and receive
• Programmable 8- or 9-bit character length
• Address detection in 9-bit mode
• Input buffer overrun error detection
• Half-duplex communication in synchronous mode (master or slave)

EUSART Asynchronous Mode

The EUSART transmits and receives data using standard non-return-to-zero (NRZ) format. As
seen in figure below, this mode does not use clock signal, while the data format being transferred is
very simple:

 97

Fig. 6-2 EUSART Asynchronous Mode

Briefly, each data is transferred in the following way:

• In idle state, data line has high logic level (1).
• Each data transmission starts with START bit which is always a zero (0).
• Each data is 8- or 9-bit wide (LSB bit is first transferred)
• Each data transmission ends with STOP bit which always has logic level which is always a

one (1).

EUSART Asynchronous Transmitter

Fig. 6-3 EUSART Asynchronous Transmitter

In order to enable data transmission via EUSART module, it is necessary to configure it to operate
as a transmitter. I other words, it is necessary to define the state of the following bits:

TXEN = 1 - EUSART transmitter is enabled by setting this bit of the TXSTA register.

SYNC = 0 - EUSART is configured to operate in asynchronous mode by clearing this bit of the
TXSTA register.

 98

SPEN = 1 - By setting this bit of the RCSTA register, EUSART is enabled and the TX/CK pin is
automatically configured as output. If this bit is simultaneously used for some analog function, it
must be disabled by clearing the corresponding bit of the ANSEL register.

The central part of the EUSART transmitter is the shift register TSR which is not directly
accessible by the user. In order to start transmission, the module must be enabled by setting the
TXEN bit of the TXSTA register. Data to be sent should be written to the TXREG register, which
will cause the following sequence of events:

• Byte will be immediately transferred to the shift register TSR.
• TXREG register remains empty, which is indicated by setting flag bit TXIF of the PIR1

register. If the TXIE bit of the PIE1 register is set, an interrupt will be generated. Besides,
the flag is set regardless of whether an interrupt is enabled or not. Also, it cannot be cleared
by software, but by writing new data to the TXREG register.

• Control electronics “pushes” data toward the TX pin in rhythm with internal clock: START
bit (0) ... data ... STOP bit (1).

• When the last bit leaves the TSR register, the TRMT bit of the TXSTA regis ter is
automatically set.

• If the TXREG register has received a new character data in the meantime, the whole
procedure is repeated immediately after the STOP bit of the previous character has been
transmitted.

Sending 9-bit data is enabled by setting the TX9 bit of the TXSTA register. The TX9D bit of the
TXSTA register is the ninth and Most Significant data bit. When transferring 9-bit data, the TX9D
data bit must be written before writing the 8 least significant bits into the TXREG register. All nine
bits of data will be transferred to the TSR shift register immediately after the TXREG write is
complete.

EUSART Asynchronous Receiver

Fig. 6-4 EUSART Asynchronous Receiver

 99

Similar to the activation of EUSART transmitter, in order to enable receiver it is necessary to
define the following bits:

CREN = 1 - EUSART receiver is enabled by setting this bit of the RCSTA register.

SYNC = 0 - EUSART is configured to operate in asynchronous mode by clearing this bit stored in
the TXSTA register.

SPEN = 1 - By setting this bit of the RCSTA register, EUSART is enabled and the RX/DT pin is
automatically configured as input. If this bit is simultaneously used for some analog function, it
must be disabled by clearing the corresponding bit of the ANSEL register.

Upon this first and necessary step is accomplished and START bit is detected, data is transferred to
the shift register RSR through the RX pin. Upon the STOP bit has been received, the following
occurs:

• Data is automatically transferred to the RCREG register (if empty).
• The flag bit RCIF is set and an interrupt, if enabled by the RCIE bit of the PIE1 register,

occurs. Similar to transmitter, the flag bit is cleared by software only, i.e. by reading the
RCREG register. Have in mind that this is a two character FIFO memory (first-in, first-out)
which allows reception of two characters simultaneously.

• If the RCREG register is occupied (contains two bytes) and the shift register detects new
STOP bit, the overflow bit OERR will be set. In this case, a new coming data is lost, and
the OEER bit must be cleared by software. It is done by clearing and resetting the CREN
bit.
Note: it is not possible to receive new data as far as the OERR bit is set.

• If the STOP bit is zero (0), the FERR bit of the RCSTAregister detecting receive error will
be set.

• To receive 9-bit data it is necessary to set the RX9 bit of the RCSTA register.

Receive Error Detection

There are two types of errors which the microcontroller can automatically detect. The first one is
called Framing error and occurs when the receiver does not detect the STOP bit at the expected
time. Such error is indicated via the FERR bit of the RCSTA register. If this bit is set, it means that
the last received data may be incorrect. It is important to know several things:

• A Framing error does not generate an interrupt by itself.
• If this bit is set, the last received data has an error.
• A framing error (bit set) does not prevent reception of new data.
• The FERR bit is cleared by reading received data, which means that check must be done

before data reading.
• The FERR bit cannot be cleared by software. If needed, it can be cleared by clearing the

SPEN bit of the RCSTA register. It will simultaneously cause reset of the whole EUSART
system.

Another type of error is called Overrun Error. The receive FIFO can hold two characters. An
overrun error will be generated if the third character is received. Simply, there is no space for
another one byte and an error is unavoidable! When this happens the OERR bit of the RCSTA
register is set. The consequences are the following:

 100

• Data already stored in the FIFO registers (two bytes) can be normally read.
• No additional data will be received until the OERR bit is cleared.
• This bit is not directly accessed. To clear it, it is necessary to clear the CREN bit of the

RCSTA register or to reset the whole EUSART system by clearing the SPEN bit of the
RCSTA register.

Receiving 9-bit Data

In addition to receiving standard 8-bit data, the EUSART system supports 9-bit data reception. On
transmit side, the ninth bit is “attached” to the original byte just before the STOP bit. On receive
side, when the RX9 bit of the RCSTA register is set, the ninth data bit will be automatically written
to the RX9D bit of the same register. When this byte is received, one should take care of how to
read its bits- the RX9D data bit must be read before reading the 8 least significant bits of the
RCREG register. Otherwise, the ninth data bit will be automatically cleared.

Fig. 6-5 Receiving 9-bit Data

Address Detection

When the ADDEN bit of the RCSTAregister is set, the EUSART module is able to receive only 9-
bit data, whereas all 8-bit data will be ignored. Although it seems like restriction, such mode
enables serial communication between several microcontrollers. The principle of operation is
simple. The master device sends 9-bit data which represents the address of one microcontroller. All
slave microcontrollers sharing the same transmission line, receive this data. Of course, each of
them must have the ADDEN bit set because it enables address detection.

 101

Fig. 6-6 Address Detection

Upon receiving that data each slave checks if that address matches its own. Software in which
address match occurs, must disable address detection by clearing its ADDEN bit. The master
device keeps on sending 8-bit data. All data passing through the transmission line will be received
by “recognized” EUSART module only. Upon receiving the last byte, the slave device should set
the ADDEN bit in order to enable a new address detection.

Fig. 6-7 Sending Data

 102

TXSTA Register

CSRC - Clock Source Select bit - determines clock source. It is used only in synchronous mode.

• 1 - Master mode. Clock is generated internally from Baud Rate Generator.
• 0 - Slave mode. Clock is generated from external source.

TX9 - 9-bit Transmit Enable bit

• 1 - 9-bit data transmission via EUSART system.
• 0 - 8-bit data transmission via EUSART system.

TXEN - Transmit Enable bit

• 1 - Transmission enabled.
• 0 - Transmission disabled.

SYNC - EUSART Mode Select bit

• 1 - EUSART operates in synchronous mode.
• 0 - EUSART operates in asynchronous mode.

SENDB - Send Break Character bit is only used in asynchronous mode and only in case it is
required to observe LIN bus standard.

• 1 - Sending Break character is enabled.
• 0 - Break character transmission is completed.

BRGH - High Baud Rate Select bit determines baud rate in asynchronous mode. It does not
affect EUSART in synchronous mode.

• 1 - EUSART operates at high speed.
• 0 - EUSART operates at low speed.

TRMT - Transmit Shift Register Status bit

• 1 - TSR register is empty.
• 0 - TSR register is full.

TX9D - Ninth bit of Transmit Data can be used as address or parity bit.

 103

RCSTA Register

SPEN - Serial Port Enable bit

• 1 - Serial port enabled. RX/DT and TX/CK pins are automatically configured as input and
output respectively.

• 0 - Serial port disabled.

RX9 - 9-bit Receive Enable bit

• 1 - Receiving 9-bit data via EUSART system.
• 0 - Receiving 8-bit data via EUSART system.

SREN - Single ReceiveEnable bit is used only in synchronous mode when the microcontroller
operates as master.

• 1 - Single receive enabled.
• 0 - Single receive disable.

CREN - Continuous Receive Enable bit acts differently depending on EUSART mode.

Asynchronous mode:

• 1 - Receiver enabled.
• 0 - Receiver disabled.

Synchronous mode:

• 1 - Enables continuous receive until the CREN bit is cleared.
• 0 - Disables continuous receive.

ADDEN - Address Detect Enable bit is only used in address detect mode.

• 1 - Enables address detection on 9-bit data receive.
• 0 - Disables address detection. The ninth bit can be used as parity bit.

FERR - Framing Error bit

• 1 - On receive, Framing Error is detected.
• 0 - No framing error.

OERR - Overrun Error bit.

• 1 - On receive, Overrun Error is detected.
• 0 - No overrun error.

RX9D - Ninth bit of Received Data can be used as address or parity bit.

 104

EUSART Baud Rate Generator (BRG)

If you carefully look at the asynchronous EUSART receiver or transmitter diagram, you will see in
both cases that clock signal from the local timer BRG is used for synchronization. The same clock
source is also used in synchronous mode.

This timer consists of two 8-bit registers comprising one 16-bit register.

Fig. 6-10 EUSART Baud Rate Generator (BRG)

A number written to these two registers determines baud rate. Besides, both BRGH bit of the
TXSTA register and BRGH16 bit of the BAUDCTL register affect clock frequency.

The formula used to determine Baud Rate is given in the table below.

Bits

SYNC BRG1G BRGH
BRG / EUSART

Mode
Baud Rate
Formula

0 0 0
8-bit /

asynchronous
Fosc / [64 (n + 1)]

0 0 1
8-bit /

asynchronous
Fosc / [16 (n + 1)]

0 1 0
16-bit /

asynchronous
Fosc / [16 (n + 1)]

0 1 1
16-bit /

asynchronous
Fosc / [4 (n + 1)]

1 0 X
8-bit /

asynchronous
Fosc / [4 (n + 1)]

1 1 X
16-bit /

asynchronous
Fosc / [4 (n + 1)]

The following tables contain values that should be written to the 16-bit register SPBRG and
assigned to the SYNC, BRGH and BRGH16 bits in order to obtain some of the standard baud
rates.

 105

The formulas used to determine the Baud Rate are:

 106

 107

BAUDCTL Register

ABDOVF - Auto-Baud Detect Overflow bit is only used in asynchronous mode during baud rate
detection.

• 1 - Auto-baud timer overflowed.
• 0 - Auto-baud timer did not overflowed.

RCIDL - Receive Idle Flag bit is only used in asynchronous mode.

• 1 - Receiver is idle.
• 0 - START bit has been received and receiving is in progress.

SCKP - Synchronous Clock Polarity Select bit acts differently depending on EUSART mode.

Asynchronous mode:

• 1 - Transmit inverted data to the RC6/TX/CK pin.
• 0 - Transmit non-inverted data to the same pin.

Synchronous mode:

• 1 - Synchronization on rising edge of the clock.
• 0 - Synchronization on falling edge of the clock.

WUE Wake-up Enable bit

• 1 - Receiver waits for a falling edge on the RC7/RX/DT pin to start waking up the
microcontroller from sleep mode.

• 0 - Receiver operates normally.

 108

ABDEN - Auto-Baud Detect Enable bit is used in asynchronous mode only.
• 1 - Auto-baud detect mode is enabled. Bit is automatically cleared on baud rate detect.
• 0 - Auto-baud detect mode is disabled.

In Short:

Sending data via asynchronous EUSART communication:

1. The desired baud rate should be set by using bits BRGH (TXSTA register) and BRG16
(BAUDCTL register) and registers SPBRGH and SPBRG.

2. The SYNC bit (TXSTA register) should be cleared and the SPEN bit should be set
(RCSTA register) in order to enable serial port.

3. On 9-bit data transmission, the TX9 bit of the TXSTA register should be set.
4. Data transmission is enabled by setting bit TXEN of the TXSTA register. Bit TXIF of the

PIR1 register is automatically set.
5. If needed the bit TXEN causes an interrupt, the GIE and PEIE bits of the INTCON register

should be set.
6. On 9-bit data transmission, value of the ninth bit should be written to the TX9D bit of the

TXSTA register.
7. Transmission starts by writing 8-bit data to the TXREG register.

Receiving data via asynchronous EUSART communication:

1. Baud Rate should be set by using bits BRGH (TXSTA register) and BRG16 (BAUDCTL
register) and registers SPBRGH and SPBRG.

2. The SYNC bit (TXSTA register) should be cleared and the SPEN bit should be set
(RCSTA register) in order to enable serial port.

3. If it is necessary the data receive causes an interrupt, both the RCIE bit of the PIE1 register
and bits GIE and PEIE of the INTCON register should be set.

4. On 9-bit data receive, the RX9 bit of the RCSTA register should be set.
5. Data receive should be enabled by setting the CREN bit of the RCSTA register.
6. The RCSTA register should be read to get information on possible errors which have

occurred during transmission. On 9-bit data receive, the ninth bit will be stored in this
register.

7. Received 8-bit data stored in the RCREG register should be read.

Setting Address Detection Mode:

1. Baud Rate should be set by using bits BRGH (TXSTA register) and BRG16 (BAUDCTL
register) and registers SPBRGH and SPBRG.

2. The SYNC bit (TXSTA register) should be cleared and the SPEN bit should be set
(RCSTA register) in order to enable serial port.

3. If it is necessary the data receive causes an interrupt, the RCIE bit of the PIE1 bit as well as
bits GIE and PEIE of the INTCON register should be set.

4. The RX9 bit of the RCSTA register should be set.
5. The ADDEN of the RCSTA register should be set, which enables a data to be interpreted as

address.
6. Data receive is enabled by setting the CREN bit of the RCSTA register.
7. Immediately upon 9-bit data is received, the RCIF bit of the PIR1 register will be

automatically set. If enabled, an interrupt occurs.

 109

8. The RCSTA register should be read in order to get information on possible errors which
have occurred during transmission. The ninth bit RX9D is always set.

9. Received 8-bits stored in the RCREG register should be read. It should be checked whether
the combination of these bits matches the predefined address. If the match occurs, it is
necessary to clear the ADDEN bit of the RCSTA register, which enables further 8-bit data
receive.

Master Synchronous Serial Port Module

MSSP module (Master Synchronous Serial Port) is a very useful, but at the same time one of the
most complex circuit within the microcontroller. It enables high speed communication between a
microcontroller and other peripherals or microcontroller devices by using few input/output lines
(maximum two or three). Therefore, it is commonly used to connect the microcontroller to LCD
displays, A/D converters, serial EEPROMs, shift registers etc. The main feature of this
communication is that it is synchronous and suitable for use in systems with a single master and
one or more slaves. A master device contains the necessary circuitry for baud rate generation and
supplies the clock for all devices in the system. Slave devices may in that way eliminate the
internal clock generation circuitry. The MSSP module can operate in one of two modes:

• SPI mode (Serial Peripheral Interface)
• I2C mode (Inter-Integrated Circuit)

As seen in figure, one MSSP module represents only a half of hardware needed to establish serial
communication, while another half is stored in device the data is exchanged with. Even though the
modules on both ends of the line are the same, their modes are essentially different depending on
whether they operate as a master or a slave:

If the microcontroller to be programmed controls another device or circuit (peripherals), then it
should operate as a master device. A module defined as such will generate clock when needed, i.e.
only when data receive and transmit is required by the software. It depends on the master whether
the connection will be established or not. Otherwise, if the microcontroller to be programmed is a
part of some peripheral which belongs to some more complex device (for example PC), then it
should operate as a slave device. As such, it always has to wait for request for data transfer from
master device.

 110

SPI Mode

The SPI mode allows 8 bits of data to be transmitted and received simultaneously using 3
input/output lines:

• SDO - Serial Data Out - transmit line.
• SDI - Serial Data In - receive line.
• SCK - Serial Clock - synchronization line.

In addition to these three lines, in case the microcontroller exchanges data with several peripheral
devices, the forth line (SS) may be also used. Refer to figure below.
SS - Slave Select - is additional pin used for specific device selection. It is active only in case the
microcontroller is in slave mode, i.e. when the external - master device requires data exchange.

When operating in SPI mode, MSSP module uses in total of 4 registers:

• SSPSTAT - status register
• SSPCON - control register
• SSPBUF - buffer register
• SSPSR - shift register (not directly available)

The first three registers are writable/readable and can be changed at any moment, while the forth
register, since not available, is used for converting data into “serial” format.

As seen in figure, the central part of the SPI module consists of two registers connected to pins for
receive, transmit and synchronization.

Shift register (SSPRS) is directly connected to the microcontroller pins and used for data
transmission in serial format. The SSPRS register has its input and output and shifts the data in and
out of device. In other words, each bit appearing on input (receive line) simultaneously shifts
another bit toward output (transmit line).

The SSPBUF register (Buffer) is a part of memory used to temporarily hold the data written to the
SSPRS until the received data is ready. Upon receiving all 8 bits of data, that byte is moved to the
SSPBUF register. This double buffering of the received data (SSPBUF) allows the next byte to
start reception before reading the data that was just received. Any write to the SSPBUF register

 111

during transmission/reception of data will be ignored. Since having been the most accessed, this
register is considered the most important from the programmers’ point of view.
Namely, if mode settings are neglected, data transfer via SPI actually means to write and read data
from this register, while another “acrobatics” such as moving registers are automatically performed
by hardware.

In short:

Prior to initializing the SPI, it is necessary to specify several options:

• Master mode (SCK pin is the clock output)
• Slave mode (SCK pin is the clock input)
• Data input phase- middle or end of data output time (SMP bit)
• Clock edge (CKE bit)
• Baud Rate (only in Master mode)
• Slave select mode (Slave mode only)

Step 1.

Data to transmit should be written to the buffer register SSPBUF.
Immediately after that, if the SPI module operates in master mode,
the microcontroller will automatically perform the following steps
2, 3 and 4. If the SPI module operates as Slave, the microcontroller
will not perform these steps until the SCK pin detects clock signal.

Step 2.

This data is now moved to the SSPSR register and the SSPBUF
register is not cleared.

 112

Step 3.

Synchronized with clock signal, this data is shifted to the
output pin (MSB bit first) while the register is
simultaneously being filled with bits through input pin. In
Master mode, the microcontroller itself generates clock,
while the Slave mode uses external clock (pin SCK).

Step 4.

The SSPSR register is full once the 8 bits of data have
been received. It is indicated by setting the BF and
SSPIF bits. The received data (that byte) is
automatically moved from the SSPSR register to the
SSPBUF register. Since data transfer via serial
communication is performed automatically, the rest of
the program is normally executed while data transfer
is in progress. In that case, the function of the SSPIF
bit is to generate interrupt when one byte transmission is completed.

Step 5.

At last, the data stored in the SSPBUF register is ready for use and
moved to any register available.

I2C mode

I2C mode (Inter IC Bus) is especially suitable when the microcontroller and integrated circuit
which the microcontroller should exchange data with are within the same device. It is commonly
about another microcontrollers or specialized, cheap integrated circuits belonging to the new
generation of so called smart peripheral components (memories, temperature sensors, real-time
clocks etc.)

Similar to serial communication in SPI mode, data transfer in I2C mode is synchronous and
bidirectional. This time only two pins are used for data transfer. These are the SDA (Serial Data)
and SCL (Serial Clock) pins. The user must configure these pins as inputs or outputs through the
TRISC bits.

Perhaps it is not directly visible. By observing particular rules (protocols), this mode enables up to
122 different components to be simultaneously connected in a simple way by using only two
valuable I/O pins. Briefly, everything works as follows: Clock - necessary to synchronize the
operation of both devices is always generated by master device (microcontroller) and its frequency
directly affects baud rate. There are protocols allowing maximum 3,4 MHz clock frequency (so
called high-speed I2C bus), but the clock frequency of the most frequently used protocol is limited
to 100 KHz. There is no limit in case of minimal frequency.

When master and slave components are synchronized by the clock, every data exchange is always
initialized by master. Once the MSSP module has been enabled, it waits for a Start condition to
occur. First master device sends the START bit (logic zero) through the SDA pin, then 7-bit
address of the selected slave device and finally the bit which requires data write (0) or read (1) to

 113

that device. Accordingly, following the start condition, the eight bits are shifted into the SSPSR
register. All slave devices share the same transmission line and all will simultaneously receive the
first byte, but only one of them has the address to match.

Once the first byte has been sent (only 8-bit data are transmitted), master goes into receive mode
and waits for acknowledgment from the receive device that address match has occurred. If the
slave device sends acknowledge data bit (1), data transfer will be continued until the master device
(microcontroller) sends the Stop bit.
This is the simplest explanation of how two components communicate. If needed, this
microcontroller is able to control more complicated situation when 1024 different components (10-
bit address) shared by several different master devices are connected. Such devices are rarely used
in practice and there is no need to discuss them at greater length.

Figure below shows the block diagram of the MSSP module in I2C mode.

 114

The MSSP module uses six registers for I2C operation. Some of them are shown in figure above:

• SSPCON
• SSPCON2
• SSPSTAT
• SSPBUF
• SSPSR
• SSPADD

 115

SSPSTAT Register

SMP Sample bit

SPI master mode - This bit determines input data phase.

• 1 - Logic state is read at end of data output time.
• 0 - Logic state is read in the middle of data output time.

SPI slave mode This bit must be cleared when SPI is used in Slave mode.

I2C mode (master or slave)

• 1 - Slew rate control disabled for standard speed mode (100kHz).
• 0 - Slew rate control enabled for high speed mode (400k Hz).

CKE - Clock Edge Select bit selects synchronization mode.

CKP = 0:

• 1 - Data is transmitted on rising edge of clock pulse (0 - 1).
• 0 - Data is transmitted on falling edge of clock pulse (1 - 0).

CKP = 1:

• 1 - Data is transmitted on falling edge of clock pulse (1 - 0).
• 0 - Data is transmitted on rising edge of clock pulse (0 - 1).

D/A - Data/Address bit is used in I2C mode only.

• 1 - Indicates that the last byte received or transmitted was data.
• 0 - Indicates that the last byte received or transmitted was address.

P - Stop bit is used in I2C mode only.

• 1 - STOP bit was detected last.
• 0 - STOP bit was not detected last.

S - Start bit is used in I2C mode only.

• 1 - START bit was detected last.
• 0 - START bit was not detected last.

 116

R/W - Read Write bit is used in I2C mode only. This bit holds the R/W bit information following
the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or
not ACK bit.

In I2C slave mode

• 1 - Data read.
• 0 - Data write.

In I2C master mode

• 1 - Transmit is in progress.
• 0 - Transmit is not in progress.

UA - Update Address bit is used in 10-bit I2C mode only.

• 1 - Indicates that it is necessary to update the address in the SSPADD register.
• 0 - Address in the SSPADD register is correct and does not need to be updated.

BF Buffer Full Status bit

During data receive (in SPI and I2C modes)

• 1 - Receive complete. The SSPBUF register is full.
• 0 - Receive not complete. The SSPBUF register is empty.

During data transmit (in I2C mode only)

• 1 - Data transmit in progress (does not include the bits ACK and STOP).
• 0 - Data transmit complete (does not include the bits ACK and STOP).

 117

SSPCON Register

WCOL Write Collision Detect bit

• 1 - Collision detected. A write to the SSPBUF register was attempted while the I2C
conditions were not valid for a transmission to start.

• 0 - No collision.

SSPOV Receive Overflow Indicator bit

• 1 - A new byte is received while the SSPSR register still holds the previous data. Since
there is no space for new data receive, one of these two bytes must be cleared. In this case,
data in SSPSR is lost.

• 0 - Serial data is correctly received.

SSPEN - Synchronous Serial Port Enable bit determines the microcontroller pins function and
initializes MSSP module:

In SPI mode

• 1 - Enables MSSP module and configures pins SCK, SDO, SDI and SS as the source of the
serial port pins.

• 0 - Disables MSSP module and configures these pins as I/O port pins.

In I2C mode

• 1 - Enables MSSP module and configures pins SDA and SCL as the source of the serial
port pins.

• 0 - Disables MSSP module and configures these pins as I/O port pins.

CKP - Clock Polarity Select bit is not used in I2C master mode.

In SPI mode

• 1 - Idle state for clock is a high level.
• 0 - Idle state for clock is a low level.

In I2C slave mode

• 1 - Enables clock.
• 0 - Holds clock low. Used to provide more time for data stabilization.

 118

SSPM3-SSPM0 - Synchronous Serial Port Mode Select bits. SSP mode is determined by
combining these bits:

SSPM3 SSPM2 SSPM1 SSPM0 Mode

0 0 0 0 SPI master mode, clock = Fosc/4

0 0 0 1 SPI master mode, clock = Fosc/16

0 0 1 0 SPI master mode, clock = Fosc/64

0 0 1 1 SPI master mode, clock = (output TMR)/2

0 1 0 0 SPI slave mode, SS pin control enabled

0 1 0 1
SPI slave mode, SS pin control disabled, SS can be used as

I/O pin

0 1 1 0 I2C slave mode, 7-bit address used

0 1 1 1 I2C slave mode, 10-bit address used

1 0 0 0 I2C master mode, clock = Fosc / [4(SSPAD+1)]

1 0 0 1 Mask used in I2C slave mode

1 0 1 0 Not used

1 0 1 1 I2C controlled master mode

1 1 0 0 Not used

1 1 0 1 Not used

1 1 1 0
I2C slave mode, 7-bit address used,START and STOP bits

enable interrupt

1 1 1 1
I2C slave mode, 10-bit address used,START and STOP bits

enable interrupt

SSPCON2 Register

GCEN - General Call Enable bit

In I2C slave mode only

• 1 - Enables interrupt when a general call address (0000h) is received in the SSPSR.
• 0 - General call address disabled.

 119

ACKSTAT - Acknowledge Status bit

In I2C Master Transmit mode only

• 1 - Acknowledge was not received from slave.
• 0 - Acknowledge was received from slave.

ACKDT - Acknowledge data bit

In I2C Master Receive mode only

• 1 - Not Acknowledge
• 0 – Acknowledge

ACKEN - Acknowledge condition Enable bit

In I2C Master Receive mode

• 1 - Initiate acknowledge condition on SDA and SCL pins and transmit ACKDT data bit. It
is automatically cleared by hardware.

• 0 - Acknowledge condition is not initiated.

RCEN - Receive Enable bit

In I2C Master mode only

• 1 - Enables data receive in I2C mode.
• 0 - Receive disabled.

PEN - STOP condition Enable bit

In I2C Master mode only

• 1 - Initiates STOP condition on pins SDA and SCL. Afterwards, this bit is automatically
cleared by hardware.

• 0 - STOP condition is not initiated.

RSEN - Repeated START Condition Enabled bit

In I2C master mode only

• 1 - Initiates START condition on pins SDA and SCL. Afterwards, this bit is automatically
cleared by hardware.

• 0 - Repeated START condition is not initiated.

SEN - START Condition Enabled/Stretch Enabled bit

In I2C Master mode only

• 1 - Initiate START condition on pins SDA and SCL. Afterwards, this bit is automatically
cleared by hardware.

• 0 - START condition is not initiated.

I2C in Master Mode

The most common case is when the microcontroller operates as a master and peripheral component
as a slave. That is why this book covers exactly this mode. It is also considered that address
consists of 7 bits and device contains only one microcontroller (one master device).

 120

In order to enable MSSP module in this mode, it is necessary to do the following:

Set baud rate (SSPADD register), turn off slew rate control (by setting the SMP bit of the
SSPSTAT register) and select master mode (SSPCON register). After the preparation has been
finished and module has been enabled (SSPCON register : SSPEN bit), one should wait for internal
electronics to signalize that everything is ready for data transmission, i.e. the SSPIF bit of the PIR1
register is set.

This bit should be cleared by software and after that the microcontroller is ready to start
“communication” with peripherals.

Data Transmission in I2C Master Mode

Each clock condition on the SDA pin starts
with logic zero (0) which appears upon
setting the SEN bit of the SSPCON2
register. Even enabled, the microcontroller
has to wait a certain time before it starts
communication. It is so called Start
condition during which internal preparations
and checks are performed. If all conditions
are met, the SSPIF bit of the PIR1 is set and data transfer starts as soon as the SSPBUF register is
loaded.

 121

Since maximum 112
integrated circuits may
simultaneously share the
same transmission line, the
first data byte must contain
address which matches only
one slave device. Each
component has its own
address listed in the proper
data sheet. The eighth bit of
the first data byte specifies
direction of data
transmission, i.e.whether the
microcontroller is to send or
receive data. In this case, it is
all about data receive and the
eighth bit therefore is logic
zero (0).

When address match occurs,
the microcontroller has to
wait for the acknowledge data bit. The slave device acknowledges address match by clearing the
ASKSTAT bit of the SSPCON2 register. If the match properly occurred, all bytes representing data
are transmitted in the same way.

Data transmission ends by setting the SEN bit of the SSPCON2 register. So called STOP condition
occurs, which enables the SDA pin to receive pulse condition: Start - Address - Acknowledge -
Data - AcknowledgeData - Acknowledge - Stop!

Data Reception in I2C Master Mode

Preparations for data reception are similar to those for data transmission, with exception that the
last bit of the first sent byte (containing address) is logic one (1). It specifies that master expects to
receive data from addressed slave device. With regard to the microcontroller, the following events
occur:

After internal preparations are finished and START bit is set, slave device starts sending one byte
at a time. These bytes are stored in the serial register SSPSR. Each data is, after receiving the last-
eighth bit, loaded to the SSPBUF register from where it can be read. By reading this register, the
acknowledge bit is automatically sent, which means that master device is ready to receive new
data.

 122

At the end, similar to data transmission, data reception ends by setting the STOP bit:

Start - Address - Acknowledge - Data - Acknowledge Data - Acknowledge - Stop!

In this pulse condition, the acknowledge bit is sent to slave device.

Baud Rate Generator

In order to synchronize data transmission, all events taking place on the SDA pin must be
synchronized with the clock generated in master device. This clock is generated by a simple
oscillator whose frequency depends on the microcontroller’s main oscillator frequency, value
written to the SSPADD register and the current SPI mode.

 123

The clock frequency of the mode described in this book depends on selected quartz crystal and the
SPADD register. The formula used to calculate it is shown in figure below.

Useful notes ...

When the microcontroller communicates with peripheral components, it may happen that data
transfer fails for some reason. In that case, it is recommended to check the state of some bits which
can clarify the problem. In practice, the state of these bits is checked by executing a short
subroutine after each byte transmission and reception (just in case).

WCOL (SPCON,7) - If you try to write a new data to the SSPBUF register while another data
transmit/receive is in progress, the WCOL bit will be set and the contents of the SSPBUF register
remains unchanged. Write does not occur. After this, the WCOL bit must be cleared in software.

BF (SSPSTAT,0) - In transmit mode, this bit is set when the CPU writes to the SSPBUF register
and remains set until the byte in serial format is shifted from the SSPSR register. In receive mode,
this bit is set when data or address is loaded to the SSPBUF register. It is cleared when the
SSPBUF register is read.

SSPOV (SSPCON,6) - In receive mode, this bit is set when a new byte is received by the SSPSR
register via serial communication, whereas the previously received data has not been read from the
SSPBUF register yet.

SDA and SCL Pins - When SPP module is enabled, these pins turns into Open Drain outputs. It
means that these pins must be connected to the resistors which at the other end are connected to
positive power supply.

 124

In Short:

In order to establish serial communication in I2C mode, the following should be done:

Setting Module and Sending Address:

• Value to determine baud rate should be written to the SSPADD register.
• SlewRate control should be turned off by setting the SMP bit of the SSPSTAT register.
• In order to select Master mode, binary value 1000 should be written to the SSPM3-SSPM0

bits of the SSPCON1 register.
• The SEN bit of the SSPCON2 register should be set (START condition).
• The SSPIF bit is automatically set at the end of START condition when the module is ready

to operate. It should be cleared.
• Slave address should be written to the SSPBUF register.
• When the byte is sent, the SSPIF bit (interrupt) is automatically set upon the acknowledge

bit has been received from Slave device.

Data Transmit:

• Data is to be send should be written to the SSPBUF register.
• When the byte is sent, the SSPIF bit (interrupt) is automatically set upon the acknowledge

bit has been received from Slave device.
• In order to inform Slave device that transmit is complete, STOP condition should be

initiated by setting the PEN bit of the SSPCON register.

Data Receive:

• In order to enable receive the RSEN bit of the SSPCON2 register should be set.
• The SSPIF bit signalizes data receive. When data is read from the SSPBUF register, the

ACKEN bit of the SSPCON2 register should be set in order to enable sending acknowledge
bit.

• In order to inform Slave device that transmit is complete, STOP condition should be
initiated by setting the PEN bit of the SSPCON register.

 125

Chapter 7: Analog Modules

Apart from a large number of digital I/O lines, the PIC16F887 contains 14 analog inputs. They
enable microcontroller to recognize not only whether some pin is driven to logic zero or one (0 or
+5V), but to precisely measure its voltage and convert it into numerical value, i.e. digital format.
The whole procedure takes place in A/D converter module which has the following features:

• The converter generates a 10-bit binary result using the method of successive
approximation and stores the conversion results into the ADC registers (ADRESL and
ADRESH).

• There are 14 separate analog inputs.
• The A/D converter allows conversion of an analog input signal to a 10-bit binary

representation of that signal.
• By selecting voltage references Vref- and Vref+, the minimal resolution or quality of

conversion may be adjusted to various needs.

ADC Mode and Registers

Even though the use of A/D converter seems to be very complicated, it is basically very simple,
simpler than using timers and serial communication module, anyway.

Fig. 7-1 ADC Mode and Registers

 126

The module is under control of the bits of four registers:

• ADRESH - Contains high byte of conversion result
• ADRESL - Contains low byte of conversion result
• ADCON0 - Control register 0
• ADCON1 Control register 1

ADRESH and ADRESL Registers

Upon converting an analog value into a digital one, the result of 10-bit A/D conversion will be
stored in these two registers. In order to deal with this value easier, it can appear in two formats-
left justified and right justified. The ADFM bit of the ADCON1 register determines the format of
conversion result (see figure). In case the A/D converter is not used, these registers may be used as
general-purpose registers.

Fig. 7-2 ADRESH and ADRESL Registers

A/D Acquisition Requirements

For the ADC to meet its specified accuracy, it is necessary to provide certain time delay between
selecting specific analog input and measurement itself. That time is called “acquisition time” and
mainly depends on the source impedance. There is an equation used for accurate calculating this
time which in the worst case amounts to approximately 20uS. Briefly, after selecting (or changing)
the analog input and before starting conversion it is necessary to provide at least 20uS time delay
to enable the ACD maximal conversion accuracy.

ADC Clock Period

A time needed to complete one bit conversion is defined as TAD. The required TAD must be at
least 1,6 uS. One full 10-bit A/D conversion is a bit longer than expected and amounts 11 TAD
periods. However, since both the conversion clock frequency and source are determined by
software, one of available combination of bits ADCS1 and ADCS0 should be selected before
voltage measurement on some analog input starts. These bits are stored in the ADCON0 register.

 127

Device Frequency (Fosc) ADC Clock
Source ADCS1 ADCS0

20 Mhz 8 Mhz 4 Mhz 1 Mhz

Fosc/2 0 0 100 nS 250 nS 500 nS 2 uS

Fosc/8 0 1 400 nS 1 uS 2 uS 8 uS

Fosc/32 1 0 1.6 uS 4 uS 8 uS 32 uS

Frc 1 1 2 - 6 uS 2 - 6 uS 2 - 6 uS 2 - 6 uS

Any change in the system clock frequency will affect the ADC clock frequency, which may
adversely affect the ADC result. Device frequency characteristics are shown in the table above.
The values in the shaded cells are outside of recommended range.

How to Use A/D Converter?

In order to enable A/D converter to run without problems as well as to avoid unexpected results, it
is necessary to consider the following:

• A/D converter does not differ between digital and analog voltages. In order to avoid errors
in measurement or some chip damage to, the pins should be con figured as analog inputs
before conversion starts. The bits used for that pur pose are stored in the TRIS and
ANSELH registers.

• When the port with analog inputs marked as CH0-CH13 is read, the corresponding bits will
be driven to logic zero (0).

• Roughly speaking, voltage measurement in converter is based on comparing input voltage
with internal scale which has 1024 marks (210=1024). The low est scale mark stands for
the Vref- voltage, while the highest mark stands for the Vref+ voltage. Figure below shows
selectable referent voltages and their minimum and maximum values as well.

Fig. 7-3 How to Use A/D Converter

 128

ADCON0 Register

ADCS1, ADCS0 - A/D Conversion Clock Select bits select clock frequency used internal
synchronization of A/D converter. It also affects duration of conversion.

ADCS1 ADCS2 Clock

0 0 Fosc/2

0 1 Fosc/8

1 0 Fosc/32

1 1 RC *

• Clock is generated by internal oscillator which is built in converter.
•

CHS3-CHS0 - Analog Channel Select bits select a pin or an analog channel for con version, i.e.
voltage measurement:

CHS3 CHS2 CHS1 CHS0 Channel Pin

0 0 0 0 0 RA0/AN0

0 0 0 1 1 RA1/AN1

0 0 1 0 2 RA2/AN2

0 0 1 1 3 RA3/AN3

0 1 0 0 4 RA5/AN4

0 1 0 1 5 RE0/AN5

0 1 1 0 6 RE1/AN6

0 1 1 1 7 RE2/AN7

1 0 0 0 8 RB2/AN8

1 0 0 1 9 RB3/AN9

1 0 1 0 10 RB1/AN10

1 0 1 1 11 RB4/AN11

1 1 0 0 12 RB0/AN12

1 1 0 1 13 RB5/AN13

1 1 1 0 CVref

1 1 1 1 Vref = 0.6V

 129

GO/DONE - A/D Conversion Status bit determines current status of conversion:
• 1 - A/D conversion is in progress.
• 0 - A/D conversion is complete. This bit is automatically cleared by hardware when the

A/D conversion is completed.
•

ADON - A/D On bit enables A/D converter.
• 1 - A/D converter is enabled.
• 0 - A/D converter is disabled.

ADCON1 Register

ADFM - A/D Result Format Select bit

• 1 - Conversion result right justified. Six most significant bits of the ADRESLH are not
used.

• 0 - Conversion result left justified. Six least significant bits of the ADRESL are not used.

VCFG1 - Voltage Reference bit selects negative voltage reference source needed for A/D
converter operating.

• 1 - Negative voltage reference is applied on the Vref- pin.
• 0 - Voltage power supply Vss is used as negative voltage reference source.

VCFG0 - Voltage Reference bit selects positive voltage reference source needed for A/D
converter operating.

• 1 - Positive voltage reference is applied on the Vref+ pin.
• 0 - Voltage power supply Vdd is used as positive voltage reference source.

In Short:

In order to measure voltage on an input pin by A/D converter the following should be done:

Step 1 - Configuring port:

• Write logic one (1) to the corresponding bit of the TRIS register to configure it as input.
• Write logic one (1) to the corresponding bit of the ANSEL register to configure it as analog

input.

Step 2 - Configuring ADC module:

• Configure voltage reference in the ADCON1 register.

 130

• Select ADC conversion clock in the ADCON0 register.
• Select one of input channels CH0-CH13 of the ADCON0 register.
• Select data format using the ADFM bit of the ADCON1 register.
• Enable A/D converter by setting the ADON bit of the ADCON0 register.

Step 3 - Configuring ADC interrupt (optionally):

• Clear the ADIF bit.
• Set the ADIE, PEIE and GIE bits.

Step 4 - Wait for the required acquisition time (approximately 20uS) to pass.

Step 5 - Start conversion by setting the GO/DONE bit of the ADCON0 register.

Step 6 - Wait for ADC conversion to complete.

• It is necessary to check in program loop whether the GO/DONE pin is cleared or wait for
an A/D interrupt (must be previously enabled).

Step 7 - Read ADC results:

• Read the ADRESH and ADRESL registers.

Analog Comparator

In addition to A/D converter, there is one more module which until quite recently has been
embedded only in integrated circuits belonging to so called analog electronics. Owing to the fact
that it is hardly possible to find any more complex automatic device which in some way does not
use these circuits, two high quality comparators along with additional electronics are integrated
into the microcontroller and connected to its pins.
How does a comparator operate? Basically, analog comparator is an amplifier which compares the
magnitude of voltages at two inputs. Looking at its physical features, it has two inputs and one
output. Depending on which input has higher voltage (analog value), a logic zero (0) or logic one
(1) (digital values) will appear on its output:

Fig. 7-6 Analog Comparator

 131

• When the analog voltage at Vin- is higher than the analog voltage at Vin+, the output of the
comparator is a digital low level.

• When the analog voltage at Vin+ is higher than the analog voltage at Vin-, the output of the
comparator is a digital high level.

The PIC16F887 microcontroller has two such voltage comparators whose inputs are connected to
I/O pins RA0-RA3, whereas the outputs are connected to the pins RA4 and RA5. In addition there
is also a referent voltage internal source on chip itself , but it will be discussed later.

These two circuits are under control of the bits stored in the following registers:

CM1CON0 is in control of comparator C1;
CM2CON0 is in control of comparator C2;
CM2CON1 is in control of comparator C2;

Voltage Reference Internal Source

One of two analog voltages provided on the comparator inputs is usually stable and unchangeable.
Because of those features it is called “voltage reference”(Vref). To generate it, both external and
special internal voltage source can be used. After selecting voltage source, Vref is derived from it
by means of ladder network consisting of 16 resistors which form voltage divider. The voltage
source is selectable through both ends of that divider through the VRSS bit of the VRCON register.

In addition, the voltage fraction provided by resistor ladder network may be selected through the
bits VR0-VR3 and used as voltage reference. See figure below.

Fig. 7-7 VREF

 132

The comparator voltage reference has 2 ranges with 16 voltage levels in each range. Range
selection is controlled by the VRR bit of the VRCON register. The selected voltage reference may
be output to the RA2/AN2 pin.

Even though the main idea was to obtain varying voltage reference for the operation of analog
modules, a simple A/D converter is obtained in that way too. This converter is very useful in some
situations.

It’s operation is under control of the VRCON register.

Comparators and Interrupt Operation

The flag bit CMIF of the register PIR is set on every change of logic state on any comparator’s
output. The same changes also cause an interrupt if the following bits are set:

CMIE bit of the PIE register
PEIE bit of the INTCON register
GIE bit of the INTCON register

If interrupt is enabled, any change on the comparator’s output can wake up the microcontroller
from sleep mode if it is setup in that mode.

CM1CON0 Register

Bits of this register are in control of the comparator C1. It mainly affects configuration of its
inputs. To understand it better, look at the figure below which shows only a part of electronics
directly affected by the bits of this register.

 133

C1ON - Comparator C1 Enable bit enables comparator C1.

• 1 - Comparator C1 is enabled.
• 0 - Comparator C1 is disabled.

C1OUT - Comparator C1 Output bit is comparator C1 output bit.

If C1POL = 1 (comparator output is inverted)

• 1 - Analog voltage at C1Vin+ is lower than analog voltage at C1Vin-.
• 0 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.

If C1POL = 0 (comparator output is non-inverted)

• 1 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.
• 0 - Analog voltage at C1Vin+ is lower than analog voltage at C1Vin-.

C1OE Comparator C1 Output Enable bit.

• 1 - Comparator C1OUT output is connected to the C1OUT pin.*
• 0 - Comparator output is internal only.

* In order to enable the C1OUT bit to be present on the pin, two conditions must be met: C1ON =
1 (comparator must be on) and the corresponding TRIS bit = 0 (pin must be configured as output).

C1POL - Comparator C1 Output Polarity Select bit enables comparator C1 out put state to be
inverted.

• 1 - Comparator C1 output is inverted.
• 0 - Comparator C1 output is non-inverted.

C1R - Comparator C1 Reference Select bit

• 1 - Non-inverting input C1Vin+ is connected to reference voltage C1Vref.
• 0 - Non-inverting input C1Vin+ is connected to the C1IN+ pin.

 134

C1CH1, C1CH0 - Comparator C1 Channel Select bit

C1CH1 C1CH0 Comparator C1Vin- input

0 0 Input C1Vin- is connected to the C12IN0- pin

0 1 Input C1Vin- is connected to the C12IN1- pin

1 0 Input C1Vin- is connected to the C12IN2- pin

1 1 Input C1Vin- is connected to the C12IN3- pin

CM2CON0 Register

Bits of this register are in control of comparator C2. Similar to the previous case, the figure shows
simplified schematic of the circuit affected by the bits of this register.

 135

C2ON - Comparator C2 Enable bit enables comparator C2.

• 1 - Comparator C2 is enabled.
• 0 - Comparator C2 is disabled.

C2OUT - Comparator C2 Output bit is comparator C2 output.

If C2POL = 1 (comparator output inverted)

• 1 - Analog voltage at C1Vin+ is lower than analog voltage at C1Vin-.
• 0 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.

If C2POL = 0 (comparator output non-inverted)

• 1 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.
• 0 - Analog voltage at C1Vin+ is lower than analog voltage at C1Vin-.

C2OE - Comparator C2Output Enable bit

• 1 - Comparator C2OUT output is connected to the C2OUT pin.*
• 0 - Comparator output is internal only.

* In order to enable the C2OUT bit to be present on the pin, two conditions must be met: C2ON =
1 (comparator must be on) and the corresponding TRIS bit = 0 (pin must be configured as output).

C2POL - Comparator C2 Output Polarity Select bit enables comparator C2 out put state to be
inverted.

• 1 - Comparator C2 output is inverted.
• 0 - Comparator C2 output is non-inverted.

C2R - Comparator C2 Reference Select bit

• 1 - Non-inverting input C2Vin+ is connected to reference voltage C2Vref.
• 0 - Non-inverting input C2Vin+ is connected to the C2IN+ pin.

C2CH1, C2CH0 Comparator C2 Channel Select bit

C2CH1 C2CH0 Comparator C2Vin- input

0 0 Input C2Vin- is connected to the C12IN0- pin

0 1 Input C2Vin- is connected to the C12IN1- pin

1 0 Input C2Vin- is connected to the C12IN2- pin

1 1 Input C2Vin- is connected to the C12IN3- pin

CM2CON1 Register

 136

MC1OUT Mirror Copy of C1OUT bit

MC2OUT Mirror Copy of C2OUT bit

C1RSEL Comparator C1 Reference Select bit

• 1 - Selectable voltage CVref is used in voltage reference C1Vref source.
• 0 - Fixed voltage reference 0.6V is used in voltage reference C1Vref source.

C2RSEL - Comparator C2 Reference Select bit

• 1 - Selectable voltage CVref is used in voltage reference C2Vref source.
• 0 - Fixed voltage reference 0.6V is used in voltage reference C2Vref source.

T1GSS - Timer1 Gate Source Select bit

• 1 - Timer T1gate source is T1G.
• 0 - Timer T1gate source is comparator SYNCC2OUT.

C2SYNC - Comparator C2 Output Synchronization bit

• 1 - Comparator C2 output is synchronized to falling edge of Timer TMR1 clock.
• 0 - Comparator output is asynchronous signal.

VRCON Register

VREN Comparator C1 Voltage Reference Enable bit

• 1 - Voltage reference CVref source is powered on.
• 0 - Voltage reference CVref source is powered off.

 137

VROE Comparator C2 Voltage Reference Enable bit

• 1 - Voltage reference CVref is connected to the pin.
• 0 - Voltage reference CVref is disconnected from the pin.

VRR - CVref Range Selection bit

• 1 - Voltage reference source is set to low range.
• 0 - Voltage reference source is set to high range.

VRSS - Comparator Vref Range selection bit

• 1 - Voltage reference source is in the range of Vref+ to Vref-.
• 0 - Voltage reference source is in the range of Vdd - Vss (power supply voltage).

VR3 - VR0 CVref Value Selection

If VRR = 1 (low range)

Voltage reference is calculated using the formula: CVref = ([VR3:VR0]/24)Vdd

If VRR = 0 (high range)

Voltage reference is calculated using the formula: CVref = Vdd/4 + ([VR3:VR0]/32)Vdd

In Short:

In order to properly use built in Comparators, it is necessary to do the following:

Step 1 - Configuring module:

• In order to select the appropriate mode, bits of the registers CM1CON0 and CM2CON0
should be configured. Interrupt should be disabled on any change of mode.

Step 2 - Configuring internal voltage reference Vref source (only when used). In the VRCON
register it is necessary to :

• Select one of two voltage ranges using the VRR bit.
• Configure necessary Vref using bits VR3 - VR0.
• Set the VROE bit if needed.
• Enable voltage Vref source by setting the VREN bit.

Formula used to calculate voltage reference:

VRR = 1 (low range)
CVref = ([VR3:VR0]/24)VLADDER

VRR = 0 (high range)
CVref = (VLADDER/4) + ([VR3:VR0]VLADDER/32)
Vladder = Vdd or ([Vref+] - [Vref-]) or Vref+

 138

Step 3 - Starting operation:

• Enable interrupt by setting bits CMIE (PIE register), PEIE and GIE (both in the INTCON
register).

• Read bits C1OUT and C2OUT of the CMCON register.
• Read flag bit CMIF of the PIR register. After being set, this bit must be cleared in software.

 139

Chapter 8: Other MCU's Circuits

As seen in figure below, clock signal may be generated by one of two built in oscillators.

Fig. 8-1 Two built in oscillators

External oscillator is installed within the microcontroller and connected to the OSC1 and OSC2
pins. It is called “external” because it relies on external circuitry for the clock signal and frequency
stabilization, such as stand-alone oscillator, quarts crystal, ceramic resonator or resistor-capacitor
circuit. It can be stand-alone oscillator, quarts crystal, ceramic resonator or resistor-capacitor
circuit. The oscillator mode is selected by bits of bytes sent during programming, so called Config
Word.

Internal oscillator consists of two separate, internal oscillators:

The HFINTOSC is a high-frequency internal oscillator which operates at 8MHz. The
microcontroller can use clock source generated at that frequency or after being divided in prescaler.

The LFINTOSC is a low-frequency internal oscillator which operates at 31 kHz. Its clock sources
are used for watch-dog and power-up timer but it can be also used as a clock source for the
operation of entire microcontroller.

The system clock can be selected between external or internal clock sources via the System Clock
Select (SCS) bit of the OSCCON register.

 140

OSCCON Register

The OSCCON register controls the system clock and frequency selection options. It contains the
following bits: frequency selection bits (IRCF2, IRCF1, IRCF0), frequency status bits (HTS, LTS),
system clock control bits (OSTA, SCS).

IRCF2-0 - Internal Oscillator Frequency Select bits. Combination of these three bits determines
the divider rate. Clock frequency of internal oscilla tor is also determined in that way.

IRCF2 IRCF1 IRCF0 Frequency OSC.
1 1 1 8 MHz HFINTOSC

1 1 0 4 MHz HFINTOSC

1 0 1 2 MHz HFINTOSC

1 0 0 1 MHz HFINTOSC

0 1 1 500 kHz HFINTOSC

0 1 0 250 kHz HFINTOSC

0 0 1 125 kHz HFINTOSC

0 0 0 31 kHz LFINTOSC

OSTS - Oscillator Start-up Time-out Status bit indicates which clock source is currently in use.
This bit is readable only.

• 1 - External clock oscillator is in use.
• 0 - One of internal clock oscillators is in use (HFINTOSC or LFINTOSC).

HTS - HFINTOSC Status bit (8 MHz - 125 kHz) indicates whether high-frequency internal
oscillator operates in a stable way.

• 1 - HFINTOSC is stable.
• 0 - HFINTOSC is not stable.

LTS - LFINTOSC Stable bit (31 kHz) indicates whether low-frequency internal oscillator
operates in a stable way.

• 1 - LFINTOSC is stable.
• 0 - LFINTOSC is not stable.

 141

SCS - System Clock Select bit determines which oscillator is to be used as a clock source.

• 1 - Internal oscillator is used for system clock.
• 0 - External oscillator is used for system clock.

The oscillator mode is set by bits in Config Word which are written to the microcontroller memory
during programming.

External Clock Modes

In order to enable the external oscillator to operate at different speeds and use different components
for frequency stabilization, it can be configured to operate in one of several modes. Mode selection
is performed after the program writing and compiling. First of all, it is necessary to activate
program on PC used for programming. In this case, it is about PICflash program. Click on the
oscillator combox and select one option from the drop-down list. After that, the appropriate bits
will be set becoming in that way a part of several bytes which together form Config Word.

During programming, the bytes of Config Word are written to the microcontroller’s ROM memory
and stored in special registers which are not available to the user. On the basis of these bits, the
microcontroller “knows” what to do, although it is not explicitly specified in the (written) program.

 142

External oscillator in EC mode

The external clock (EC) mode uses the system clock source configured from external oscillator.
The frequency of this clock source is unlimited (0- 20MHz).

This mode has the following advantages:

• The external clock source is connected to the OSC1 input and the OSC2 is available for
general purpose I/O.

• It is possible to synchronize the operation of the microcontroller with the rest of on board
electronics.

• In this mode the microcontroller starts operating immediately after the power is on. There is
no delay required for frequency stabilization.

• Temporary stopping the external clock input has the effect of halting the device while
leaving all data intact. Upon restarting the external clock, the device resumes operation as if
nothing has happened.

 143

External oscillator in LP, XT or HS mode

The LP, XT and HS modes support the usage of internal oscillator for configuring clock source.
The frequency of this source is determined by quartz crystal or ceramic resonators connected to the
OSC1 and OSC2 pins. Depending on features of the component in use, select one of the following
modes:

LP mode (Low Power) is used for low-frequency quartz crystal only. This mode is designed to
drive only 32.768 kHz crystals usually embedded in quartz watches. It is easy to recognize them by
small size and specific cylindrical shape. The current consumption is the least of the three modes.

XT mode is used for intermediate-frequency quartz crystals up to 8 MHz. The current
consumption is the medium of the three modes.

HS mode (High Speed) is used for high-frequency quartz crystals over 8 MHz. The current
consumption is the highest of the three modes.

 144

Ceramic resonators in XT or HS mode

Ceramic resonators are by their features similar to quartz crystals. That is why they are connected
in the totally same way. Unlike quartz crystals, they are cheaper and oscillators containing them
have a bit worse characteristics. They are used for clock frequencies ranging between 100 kHz and
20 MHz.

External oscillator in RC and RCIO mode

There are certainly many advantages in using elements for frequency stabilization, but sometimes
they are really not necessary. It is mostly enough the oscillator operates at frequency not precisely
defined so that embedding of such expensive elements means a waste of money. The simplest and
cheapest solution in these situations is to use one resistor and one capacitor for the operation of
oscillator. There are two modes:

RC mode. In RC mode, the RC circuit is
connected to the OSC1 pin as shown in figure.
The OSC2 pin outputs the RC oscillator
frequency divided by 4. This signal may be
used for calibration, synchronization or other
application requirements.

RCIO mode. Similar to the previous case, the
RC circuit is connected to the OSC1 pin. This
time, the available OSC2 pin is used as
additional general purpose I/O pin.

In both cases, it is recommended to use
components as shown in figure.

The frequency of such oscillator is calculated
according to the formula f = 1/T in which:
f = frequency [Hz]
T = R*C = time constant [s]
R = resistor resistance [Ω]
C = capacitor capacity [F]

 145

Internal Clock Modes

The internal oscillator circuit consists of two separate oscillators that can be selected as the system
clock source:

The HFINTOSC oscillator is factory calibrated and operates at 8 MHz. Its frequency can be user-
adjusted via software using bits of the OSCTUNE register.

The LFINTOSC oscillator is not factory calibrated and operates at 31kHz.

Similar to the external oscillator, the internal one can also operate in several modes. The mode is
selected in the same way as in case of external oscillator- using bits of the Config Word register. In
other words, everything is performed within PC software, immediately before program writing to
the microcontroller starts.

Internal oscillator in INTOSC mode

In this mode, the OSC1 pin is available
as general purpose I/O while the OSC2
pin outputs selected internal oscillator
frequency divided by 4.

Internal oscillator in INTOSCIO mode

In this mode, both pins are available for general
purpose I/O.

Internal Oscillator Settings

The internal oscillator consists of two separate circuits.

1. The high-frequency internal oscillator HFINTOSC is connected to the postscaler (frequency
divider). It is factory calibrated and operates at 8MHz. Using postscaler, this oscillator can output
clock sources at one of seven frequencies which can be selected via software using the IRCF2,
IRCF1 and IRCF0 pins of the OSCCON register.

 146

The HFINTOSC is enabled by selecting one of seven frequencies (between 8 MHz and 125 kHz)
and setting the System Clock Source (SCS) bit of the OSCCON register afterwards. As seen in
figure below, everything is performed using bits of the OSCCON register.

2. The low-frequency oscillator LFINTOSC is uncalibrated and operates at 31 kHz. It is enabled by
selecting this frequency (bits of the OSCCON register) and setting the SCS bit of the same register.

Two-Speed Clock Start-up Mode

Two-Speed Clock Start-up mode is used to provide additional power savings when the
microcontroller operates in sleep mode. What is this all about?

When configured to operate in LP, XT or HS modes, the external oscillator will be switched off on
transition to sleep in order to reduce the overall power consumption of the device.

When conditions for wake-up are met, the microcontroller will not immediately start operating
because it has to wait for clock signal frequency to become stable. Such delay lasts for exactly
1024 pulses. After that, the microcontroller proceeds with program execution. The problem is that
very often only a few instructions are performed before the microcontroller is set up to Sleep mode
again. It means that most of time as well as power obtained from batteries is wasted. This problem
is solved by using internal oscillator for program execution while these 1024 pulses are counted.
Afterwards, as soon as the external oscillator frequency becomes stable, it will automatically take
over the “leading role”. The whole process is enabled by setting one bit of the configuration word.
In order to program the microcontroller it is necessary to select the Int-Ext Switchover option in
software.

 147

Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) monitors the operation of external oscillator and allows the
microcontroller to proceed with program execution even the external oscillator fails for some
reason. In that case, the internal oscillator takes over its role.

 148

The fail-safe clock monitor detects a failed oscillator by comparing the internal and external clock
sources. In case it takes more than 2mS for the external oscillator clock to come, the clock source
will be automatically switched. The internal oscillator will thereby continue operating controlled
by the bits of the OSCCON register. In case the OSFIE bit of the PIE2 register is set, an interrupt
will be generated. The system clock will continue to be sourced from internal clock until the device
successfully restarts the external oscillator and switches back to external operation.

Similar to the previous cases, this module is enabled by changing configuration word just before
the programming of chip starts. This time, it is done by selecting the option Fail-Safe Clock.
Monitor.

 149

OSCTUNE Register

Modifications in the OSCTUNE register affect the HFINTOSC frequency, but not the LFINTOSC
frequency. Furthermore, there is no indication during operation that shift has occurred.

TUN4 - TUN0 Frequency Tuning bits. By combining these five bits, the 8MHz oscillator
frequency shifts. In that way, the frequencies obtained by its division in the postscaler shift too.

TUN4 TUN3 TUN2 TUN1 TUN0 Frequency

0 1 1 1 1 Maximal

0 1 1 1 0

0 1 1 0 1

0 0 0 0 1

0 0 0 0 0 Calibrated

1 1 1 1 1

1 0 0 1 0

1 0 0 0 1

1 0 0 0 0 Minimal

EEPROM

EEPROM is neither part of program memory (ROM) nor data memory (RAM), but a special
memory segment. Even these memory locations are not easily and quickly accessed as other
registers, they are of great importance because the EEPROM data are permanently saved
(regardless of whether the power supply is on or off). EEPROM data can be also changed at any
moment. Because of these exceptional features, each byte of EEPROM is valuable.

The PIC16F887 microcontroller has 256 locations of data EEPROM controlled by the bits of the
following registers:

• EECON1 (control register)
• EECON2 (control register)
• EEDAT (saves data ready for write and read)
• EEADR (saves address of EEPROM location to be accessed)

 150

In addition, EECON2 is not true register, it does not physically exist. It is used in write program
sequence only.

The EEDATH and EEADRH registers belong to the same group as the registers used during
EEPROM write and read. Both of them are therefore used for program (FLASH) memory write
and read.

Since this is considered a risk zone (you surely do not want your microcontroller to accidentally
erase your program), we will not discuss it further, but advise you to be careful.

EECON1 Register

EEPGD - Program/Data EEPROM Select bit

• 1 - Access program memory.
• 0 - Access EEPROM memory.

WRERR - EEPROM Error Flag bit

• 1 - Write operation is prematurely terminated and error has occurred.
• 0 - Access EEPROM memory.

WREN - EEPROM Write Enable bit.

• 1 - Write to data EEPROM enabled.
• 0 - Write to data EEPROM disabled.

WR - Write Control bit

• 1 - Initiates write to data EEPROM.
• 0 - Write to data EEPROM is complete.

RD - Read Control bit

• 1 - Initiates read from data EEPROM.
• 0 - Read from data EEPROM disabled.

 151

Read from EEPROM Memory

In order to read data EEPROM memory, follow the procedure below:

Step 1: Write an address (00h - FFh) to the EEADR register.
Step 2: Select EEPROM memory block by clearing the EEPGD bit of the EECON1 register.
Step 3: To read location, set the RD bit of the same register.
Step 4: Data is stored in the EEDAT register and ready to use.

The following example illustrates data EEPROM read:

BSF STATUS,RP1 ;
BCF STATUS,RP0 ; Access bank 2
MOVF ADDRESS,W ; Move address to the W register
MOVWF EEADR ; Write address
BSF STATUS,RP0 ; Access bank 3
BCF EECON1,EEPGD ; Select EEPROM
BSF EECON1,RD ; Read data
BCF STATUS,RP0 ; Access bank 2
MOVF EEDATA,W ; Data is stored in the W register

Write to Data EEPROM Memory

In order to write data to EEPROM memory, first it is necessary to write to the EEADR register
first and data to the EEDAT register afterwards. Then you have to follow a special sequence to
initiate write for each byte. Interrupts must be disabled during this procedure.

Data EEPROM write is illustrated in the example below:

BSF STATUS,RP1
BSF STATUS,RP0
BTFSC EECON,WR1 ; Wait for the previous write to complete
GOTO $-1 ;
BCF STATUS,RP0 ; Bank 2
MOVF ADDRESS,W ; Move address to W
MOVWF EEADR ; Write address
MOVF DATA,W ; Move data to W
MOVWF EEDATA ; Write data
BSF STATUS,RP0 ; Bank 3
BCF EECON1,EEPGD ; Select EEPROM
BSF EECON1,WREN ; Write to EEPROM enabled
BCF INCON,GIE ; All interrupts disabled
MOVLW 55h ; Required sequence start
MOVWF EECON2
MOVLW AAh
MOVWF EECON2 ; Required sequence end
BSF EECON1,WR
BSF INTCON,GIE ; Interrupts enabled
BCF EECON1,WREN ; Write to EEPROM disabled

 152

Reset! Black-out, Brown-out or Noises?

On reset, the microcontroller immediately stops operation and clears its registers. Reset signal may
be generated externally at any moment (low logic level on the MCLR pin). If needed it can be also
generated by internal control logic. Power-on always causes reset. Namely, because of many
transitional events which take place when power supply is on (switch contact flashing and
sparkling, slow voltage rise, gradual clock frequency stabilization etc.), it is necessary to provide a
certain time delay before the microcontroller starts operating. Two internal timers- PWRT and
OST are in charge of that. The first one can be enabled or disabled during program writing. The
scenario is as follows:

When power supply voltage reaches 1.2 - 1.7V,
a circuit called Power-up timer resets the
microcontroller within approximately 72mS.
Immediately upon this time has run out, the
reset signal generates another timer called
Oscilator start-up timer within 1024 quartz
oscillator periods. When this delay is over
(marked as T reset in figure) and the MCLR pin
is set high, the microcontroller realizes that all
conditions are met and starts to execute the first
instruction in the program.

Apart from such- “controlled” reset which occurs at the moment power goes on, there are another
two resets called Black-out and Brown-out which may occur during operation as well as at the
moment power goes off.

Black-out reset

Black-out reset takes place when the power
supply normally goes off. In that case, the
microcontroller has no time to do anything
unpredictable simply because the voltage
drops very fast beneath minimal value. In
other words- the light goes off, curtain falls
down and the show is over!

Brown-out reset

When power supply voltage drops slowly
(typical example of that is battery discharge
although the microcontroller experiences far
faster voltage drop as a slow process), the
internal electronics gradually stops operating
and so called Brown-out reset occurs. In that
case, prior to the microcontroller stops
operating there is a realistic danger that
circuits which operate at higher voltages start

 153

perform unpredictable. It can also causes fatal changes in the program itself because it is saved in
on-chip flash memory.

Noises

This is a special kind of Brown-out reset
which occurs in industrial environment when
the power supply voltage “blinks” for a
moment and drops its value beneath minimal
level. Even short, such noise in power line
may catastrophically affect the operation of
device.

MCLR pin

Logic zero (0) on the MCLR pin causes immediate and regular reset. It is recommended to be
connected as shown in figure below. The function of additional components is to sustain “pure”
logic one (1) during normal operation. If their values are such to provide high logic level on the pin
only upon T reset is over, the microcontroller will immediately start operating. This feature may be
very useful when it is necessary to synchronize the operation of the microcontroller with additional
electronics or the operation of several microcontrollers.

In order to avoid any error which may occur on Brown-out reset, the PIC 16F887 has built in
‘defense mechanism’. It is a simple but effective circuit which reacts every time the voltage power
supply drops below 4V and holds that level for more than 100 micro seconds. In that case, this
circuit generates reset signal and since that moment the whole microcontroller operates as if it has
just been switched on.

 154

Chapter 9: Instruction Set

It has been already mentioned that microcontroller differs from other integrated circuits. Most of
them are ready for installation into the target device just as they are, which is not the case with the
microcontrollers. In order that the microcontroller may operate, it needs precise instructions on
what to do. In other words, a program which the microcontroller should execute must be written
and loaded into the microcontroller. This chapter covers the commands which the microcontroller
“understands”. The instruction set for the 16FXX includes 35 instructions in total. Such a small
number of instructions is specific to the RISC microcontroller because they are well-optimized
from the aspect of operating speed, simplicity in architecture and code compactness. The only
disadvantage of RISC architecture is that the programmer is expected to cope with these
instructions.

Instruction Description Operation Flag CLK *
Data Transfer Instructions

MOVLW k Move constant to W k -> w 1

MOVWF f Move W to f W -> f 1
MOVF f,d Move f to d f -> d Z 1 1, 2

CLRW Clear W 0 -> W Z 1
CLRF f Clear f 0 -> f Z 1 2

SWAPF f,d Swap nibbles in f f(7:4),(3:0) -> f(3:0),(7:4) 1 1, 2
Arithmetic-logic Instructions

ADDLW k Add W and constant W+k -> W
C, DC,

Z
1

ADDWF f,d Add W and f W+f -> d
C, DC

,Z
1 1, 2

SUBLW k Subtract W from constant k-W -> W
C, DC,

Z
1

SUBWF f,d Subtract W from f f-W -> d
C, DC,

Z
1 1, 2

ANDLW k
Logical AND with W with
constant

W AND k -> W Z 1

ANDWF f,d Logical AND with W with f W AND f -> d Z 1 1, 2
ANDWF f,d Logical AND with W with f W AND f -> d Z 1 1, 2

IORLW k Logical OR with W with constant W OR k -> W Z 1
IORWF f,d Logical OR with W with f W OR f -> d Z 1 1, 2

XORWF f,d
Logical exclusive OR with W
with constant

W XOR k -> W Z 1 1, 2

XORLW k
Logical exclusive OR with W
with f

W XOR f -> d Z 1

INCF f,d Increment f by 1 f+1 -> f Z 1 1, 2
DECF f,d Decrement f by 1 f-1 -> f Z 1 1, 2

RLF f,d Rotate left f through CARRY bit C 1 1, 2
RRF f,d Rotate right f through CARRY bit C 1 1, 2

COMF f,d Complement f f -> d Z 1 1, 2
Bit-oriented Instructions

BCF f,b Clear bit b in f 0 -> f(b) 1 1, 2

 155

BSF f,b Clear bit b in f 1 -> f(b) 1 1, 2
Program Control Instructions

BTFSC f,b
Test bit b of f. Skip the following
instruction if clear.

Skip if f(b) = 0 1 (2) 3

BTFSS f,b
Test bit b of f. Skip the following
instruction if set.

Skip if f(b) = 1 1 (2) 3

DECFSZ f,d
Decrement f. Skip the following
instruction if clear.

f-1 -> d skip if Z = 1 1 (2)
1, 2,

3

INCFSZ f,d
Increment f. Skip the following
instruction if set.

f+1 -> d skip if Z = 0 1 (2)
1, 2,

3

GOTO k Go to address k -> PC 2
CALL k Call subroutine PC -> TOS, k -> PC 2

RETURN Return from subroutine TOS -> PC 2
RETLW k Return with constant in W k -> W, TOS -> PC 2

RETFIE Return from interrupt TOS -> PC, 1 -> GIE 2
Other instructions

NOP No operation TOS -> PC, 1 -> GIE 1

CLRWDT Clear watchdog timer 0 -> WDT, 1 -> TO, 1 -> PD TO, PD 1
SLEEP Go into sleep mode 0 -> WDT, 1 -> TO, 0 -> PD TO, PD 1

*1 When an I/O register is modified as a function of itself, the value used will be that value present
on the pins themselves.
*2 If the instruction is executed on the TMR register and if d=1, the prescaler will be cleared.
*3 If the PC is modified or test result is logic one (1), the instruction requires two cycles.

Data Transfer Instructions

Data Transfer within the microcontroller takes place between working register W (called
accumulator) and a register which represents any location of internal RAM regardless of whether it
is about special function or general purpose registers.

First three instructions move literal to W register (MOVLW stands for move Literal to W), move
data from W register to RAM and from RAM to W register (or to the same RAM location with
change on flag Z only). Instruction CLRF clears f register, whereas CLRW clears W register.
SWAPF instruction swaps nibbles within f register (one nibble contains four bits).

Arithmetic-logic Instructions

Similar to most microcontrollers, PIC supports only two arithmetic instructions- addition and
subtraction. Flags C, DC, Z are automatically set depending on the results of addition or
subtraction. The only exception is the flag C. Since subtraction is performed as addition with
negative value, the flag C is inverted after subtraction. It means that the flag C is set if it is possible
to perform operation and cleared if the larger number is subtracted from smaller one. Logic one (1)
of the PIC is able to perform operations AND, OR, EX-OR, inverting (COMF) and rotation (RLF
and RRF).

 156

Instructions which rotate a register actually rotate its bits through the flag C by one bit left (toward
bit 7) or right (toward bit 0). The bit shifted from the register is moved to the flag C which is
automatically moved to the bit on the opposite side of the register.

Bit-oriented Instructions

Instructions BCF and BSF clear or set any bit in memory. Although it seems to be a simple
operation, it is not like that. CPU first reads the entire byte, changes one its bit and rewrites the
whole byte to the same location.

Program Control Instructions

PIC16F887 executes instructions GOTO, CALL, RETURN in the same way as all other
microcontrollers do. A difference is that stack is independent from internal RAM and has 8 levels.
The ‘RETLW k’ instruction is identical to RETURN instruction, with exception that a constant
defined by instruction operand is written to the W register prior to return from subroutine. This
instruction enables Lookup tabels to be easily created by creating a table as a subroutine consisting
of ‘RETLWk‘ instructions, where the literals ‘k’ belong to the table. The next step is to write the
position of the constant k (0, 1, 2, 3...n) to Wregister and call the subroutine (table) using the
CALL instruction. Table below consists of the following literals: k0, k1, k2...kn.

Main movlw 2 ;write number 2 to accumulator
call Lookup ;jump to the lookup table
Lookup addwf PCL,f ;add accumulator and program cur
 ;rent address (PCL)
retlw k0 ;return from subroutine (accumulator contains k0)
retlw k1 ;...
retlw k2 ;...
... ;...
... ;...
retlw kn ;return from subroutine (accumulator contains kn)

The first line of the subroutine (instruction ADDWF PCL,f)simply adds the constant “k” from W
register and table start address which is stored in the PCL register. The result is real data address in
program memory. Upon return from the subroutine, the W register will contain the addressed
constant k. In this case, it is the constant ‘k2’.

RETFIE (RETurn From Interrupt) represents return from interrupt routine. In contrast to the
RETURN instruction, it may automatically set the GIE bit (Global Interrupt Enable). When an
interrupt occurs this bit is automatically cleared. Only the program counter is pushed to the stack,
which means that there is no auto save of registers’ status and the current status either. The
problem is solved by saving status of all important registers at the beginning of interrupt routine.
These values are retrieved to these registers immediately before leaving the interrupt routine.

Conditional jumps are executed by two instructions: BTFSC and BTFSS. Depending on the state
of bit being tested in the ‘f’ register, the following instruction will be skipped or not.

Instruction Execution Time

All instructions are single-cycle instructions. The only exception may be conditional branch
instructions (if condition is met) or instructions being executed upon the program counter. In both

 157

cases, two cycles are required for instruction execution where the second cycle is executed as a
NOP (No Operation). One instruction cycle consists of four clock cycles. If 4MHz oscillator is
used, a nominal time for instruction execution is 1µS. In case of jump, the instruction execution
time is 2µS.

Legend

f - Any memory location (register)
W - Working register (accumulator)
b - Bit address within an 8-bit register
d - Destination bit
[label] - Set of 8 characters indicating start of particular address in the program
TOS - Top of stack
[] - Option
<> - bit field in register (several bit addresses)
C - Carry/Borrow bit of the STATUS register
DC - Digit Carry bit of the STATUS register
Z - Zero bit of the STATUS register

ADDLW - Add literal and W

Syntax: [label] ADDLW k
Description: The content of the register W is added to the 8-bit literal k. The result is stored in the
W register.
Operation: (W) + k -> W
Operand: 0 ≤ k ≤ 255
Status affected: C, DC, Z
Number of cycles: 1

EXAMPLE:
....
[label] ADDLW 0x15
Before instruction execution: W=0x10
After instruction: W=0x25
C=0 (the result is not greater than 0xFF, which means that Carry has not occurred).

ADDWF - Add W and f

Syntax: [label] ADDWF f, d
Description: Add the contents of the W and f registers.
If d = w or d = 0 the result is stored in the W register.
If d = f or d = 1 the result is stored in register f.
Operation: (W) + (f) -> d
Operand: 0 ≤ f ≤ 127, d [0,1]
Status affected: C, DC, Z
Number of cycles: 1

EXAMPLE 1:
....
[label] ADDWF REG,w

 158

Before instruction execution: W = 0x17
REG = 0xC2
After instruction: W = 0xD9
REG = 0xC2
C=0 (No carry occurs, i.e. the result is maximum 8-bit long).

EXAMPLE 2:
....
[label] ADDWF INDF,f
Before instruction execution: W=0x17
FSR = 0xC2 Register at address 0xC2 contains the value 0x20
After instruction: W = 0x17
FSR=0xC2, Register at address 0xC2 contains the value 0x37

ANDLW - AND literal with W

Syntax: [label] ANDLW k
Description: The content of the register W is AND’ed with the 8-bit literal k. It means that the
result will contain one (1) only if both corresponding bits of operand are ones (1). The result is
stored in the W register.
Operation: (W) AND k -> W
Operand: 0 ≤ k ≤ 255
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] ANDLW 0x5F
Before instruction execution: W = 0xA3 ; 1010 0011 (0xA3)
 ; 0101 1111 (0x5F)

After instruction: W = 0x03 ; 0000 0011 (0x03)
Z = 0 (result is not 0)

EXAMPLE 2:
....
[label] ANDLW 0x55
Before instruction execution: W = 0xAA ; 1010 1010 (0xAA)
 ; 0101 0101 (0x55)

After instruction: W = 0x00 ; 0000 0000 (0x00)
Z = 1(result is 0)

ANDWF - AND W with f

Syntax: [label] ANDWF f,d
Description: AND the W register with register f.
If d = w or d = 0, the result is stored in the W register.
If d = f or d = 1, the result is stored in register f.
Operation: (W) AND (f) -> d
Operand: 0 ≤ f ≤ 127, d[0,1]

 159

Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] ANDWF REG,f
Before instruction execution: W = 0x17, REG = 0xC2 ; 0001 0111 (0x17)
 ; 1100 0010 (0xC2)

After instruction: W = 0x17, REG = 0x02 ; 0000 0010 (0x02)

EXAMPLE 2:
....
[label] ANDWF FSR,w
Before instruction execution: W = 0x17, FSR = 0xC2 ; 0001 0111 (0x17)
 ; 1100 0010 (0xC2)

After instruction: W = 0x02, FSR = 0xC2 ; 0000 0010 (0x02)

BCF - Bit Clear f

Syntax: [label] BCF f, b
Description: Bit b of register f is cleared.
Operation: (0) -> f(b)
Operand: 0 ≤ f ≤ 127, 0 ≤ b ≤ 7
Status affected: -
Number of cycles: 1

EXAMPLE 1:
....
[label] BCF REG,7
Before instruction execution: REG = 0xC7 ; 1100 0111 (0xC7)
After instruction: REG = 0x47 ; 0100 0111 (0x47)
EXAMPLE 2:
....
[label] BCF INDF,3
Before instruction execution: W = 0x17
 FSR = 0xC2
 Register at address (FSR)contains the value 0x2F
After instruction: W = 0x17
 FSR = 0xC2
 Register at address (FSR)contains the value 0x27

BSF - Bit set f

Syntax: [label] BSF f,b
Description: Bit b of register f is set.
Operation: 1 -> f (b)
Operand: 0 ≤ f ≤ 127, 0 ≤ b ≤ 7
Status affected: -
Number of cycles: 1

 160

EXAMPLE 1:
....
[label] BSF REG,7
Before instruction execution: REG = 0x07 ; 0000 0111 (0x07)
After instruction: REG = 0x87 ; 1000 0111 (0x87)

EXAMPLE 2:
....
[label] BSF INDF,3
Before instruction execution: W = 0x17
 FSR = 0xC2
 Register at address (FSR)contains the value 0x20
After instruction: W = 0x17
 FSR = 0xC2
 Register at address (FSR)contains the value 0x28

BTFSC - Bit test f, Skip if Clear

Syntax: [label] BTFSC f, b
Description: If bit b of register f is 0, the next instruction is skipped and a NOP is executed instead.
In this case, two-cycle instruction is required.
Operation: Skip the next instruction if f(b) = 0
Operand: 0 ≤ f ≤ 127, 0 ≤ b ≤ 7
Status affected: -
Number of cycles: 1 or 2 depending on bit b

EXAMPLE:

LAB_01 BTFSC REG,1 ; Test bit 1 of REG
LAB_02 ; Skip this line if bit = 1
LAB_03 ; Jump here if bit = 0
Before instruction execution: The program counter was at address LAB_01.
After instruction:
- if bit 1 of REG is cleared, program counter points to address LAB_03.
- if bit 1 of REG is set, program counter points to address LAB_02.

BTFSS - Bit test f, Skip if Set

Syntax: [label] BTFSS f, b
Description: If bit b of register f is 1, the next instruction is skipped and a NOP is executed instead.
In this case, two-cycle instruction is required.
Operation: Skip the next instruction if f(b) = 1
Operand: 0 ≤ f ≤ 127, 0 ≤ b ≤ 7
Status affected: -
Number of cycles: 1 or 2 depending on bit b

EXAMPLE:

LAB_01 BTFSS REG,3 ; Test bit 3 of REG
LAB_02 ; Skip this line if bit = 0
LAB_03 ; Jump here if bit = 1

 161

Before instruction execution: The program counter was at address LAB_01
After instruction:
- if bit 3 of REG is cleared, program counter points to address LAB_03.
- if bit 3 of REG is cleared, program counter points to address LAB_02.

CALL - Calls Subroutine

Syntax: [label] CALL k
Description: Calls subroutine. First the address of the next instruction to execute is pushed onto the
stack. It is the PC+1 address. Afterwards, the subrou tine address is written to the program counter.
Operation: (PC) + 1 -> (Top Of Stack - TOS)
k -> PC (10 : 0), (PCLATH (4 : 3)) -> PC (12 : 11)
Operand: 0 ≤ k ≤ 2047
Flag: -
Status affected: 2

EXAMPLE:

LAB_01 CALL LAB_02 ; Call subroutine LAB_02

LAB_02
Before instruction execution: PC = address LAB_01
 TOS (top of stack) = x
After instruction: PC = address LAB_02
 TOS (top of stack) = LAB_01

CLRF - Clear f

Syntax: [label] CLRF f
Description: The content of register f is cleared and the Z flag of the STATUS register is set.
Operation: 0 -> f
Operand: 0 ≤ f ≤ 127
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] CLRF TRISB
Before instruction execution: TRISB=0xFF
After instruction: TRISB=0x00
Z = 1
EXAMPLE 2:
Before instruction execution: FSR=0xC2
 Register at address 0xC2 contains the value 0x33
After instruction: FSR=0xC2
 Register at address 0xC2 contains the value 0x00
 Z = 1

 162

CLRW - Clear W
Syntax: [label] CLRW
Description: Register W is cleared and the Z flag of the STATUS register is set.
Operation: 0 -> W
Operand: -
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] CLRW
Before instruction: W=0x55
After instruction: W=0x00
 Z = 1

CLRWDT - Clear Watchdog Timer

Syntax: [label] CLRWDT
Description: Resets the watchdog timer and the WDT prescaler. Status bits TO and PD are set.
Operation: 0 -> WDT 0 -> WDT prescaler 1 -> TO 1 -> PD
Operand: -
Status affected: TO, PD
Number of cycles: 1
EXAMPLE :
....
[label] CLRWDT
Before instruction execution: WDT counter = x
 WDT prescaler = 1:128
After instruction: WDT counter = 0x00
 WDT prescaler = 0
 TO = 1
 PD = 1
 WDT prescaler = 1: 128

COMF - Complement f

Syntax: [label] COMF f, d
Description: The content of register f is complemented (logic zeros (0) are replaced by ones (1) and
vice versa). If d = w or d = 0 the result is stored in W. If d = f or d = 1 the result is stored in register
f.
Operation: (f) -> d
Operand: 0 ≤ f ≤ 127, d[0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] COMF REG,w
Before instruction execution: REG = 0x13 ; 0001 0011 (0x13)
 ; complementing

 163

After instruction: REG = 0x13 ; 1110 1100 (0xEC)
 W = 0xEC
EXAMPLE 2:
....
[label] COMF INDF, f
Before instruction execution: FSR = 0xC2
 Register at address (FSR)contains the value 0xAA
After instruction: FSR = 0xC2
 Register at address (FSR)contains the value 0x55

DECF - Decrement f

Syntax: [label] DECF f, d
Description: Decrement register f by one. If d = w or d = 0, the result is stored in the W register. If
d = f or d = 1, the result is stored in register f.
Operation: (f) - 1 -> d
Operand: 0 ≤ f ≤ 127, d[0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] DECF REG,f
Before instruction execution: REG = 0x01
 Z = 0
After instruction: REG = 0x00
 Z = 1
EXAMPLE 2:
....
[label] DECF REG,w
Before instruction execution: REG = 0x13
 W = x, Z = 0
After instruction: REG = 0x13
 W = 0x12, Z = 0

DECFSZ - Decrement f, Skip if 0

Syntax: [label] DECFSZ f, d
Description: Decrement register f by one. If d = w or d = 0, the result is stored in the W register. If
d = f or d = 1, the result is stored in register f. If the result is 0, then a NOP is executed instead. In
this case, two-cycle instruction is required.
Operation: (f) - 1 -> d
Operand: 0 ≤ f ≤ 127, d[0,1]
Status affected: -
Number of cycles: 1 or 2 depending on the result.

EXAMPLE 1:

 MOVLW .10
 MOVWF CNT ;10 -> CNT

 164

Loop
 ;Instruction block

 DECFSZ CNT,f ; decrement REG by one
 GOTO Loop ; Skip this line if = 0
LAB_03 ; Jump here if = 0
In this example, instruction block is executed as many times as the initial value of the variable
CNT is, which in this example is 10.

GOTO - Unconditional Branch

Syntax: [label] GOTO k
Description: Unconditional jump to the address k.
Operation: (k) -> PC(10:0), (PCLATH(4:3)) -> PC(12:11)
Operand: 0 ≤ k ≤ 2047
Status affected: -
Number of cycles: 2

EXAMPLE :

LAB_00 GOTO LAB_01 ; Jump to LAB_01

LAB_01 ; Program continues from here
Before instruction execution: PC = LAB_00 address
After instruction: PC = LAB_01 address

INCF - Increment f

Syntax: [label] INCF f, d
Description: Increment register f by one.
If d = w or d = 0, the result is stored in register W.
If d = f or d = 1, the result is stored in register f.
Operation: (f) + 1 -> d
Operand: 0 ≤ f ≤ 127, d[0,1]
Status affected: Z
Number of cycles: 1
EXAMPLE 1:
....
[label] INCF REG,w
Before instruction execution: REG = 0x10
 W = x, Z = 0
After instruction: REG = 0x10
 W = 0x11, Z = 0
EXAMPLE 2:
....
[label] INCF REG,f
Before instruction execution: REG = 0xFF
 Z = 0
After instruction: REG = 0x00
 Z = 1

 165

INCFSZ - Increment f, Skip if 0

Syntax: [label] INCFSZ f, d
Description: Register f is incremented by one. If d = w or d = 0, the result is stored in register W. If
d = f or d = 1, the result is stored in register f. If the result is 0, then a NOP is executed instead. In
this case, two- cycle instruction is required.
Operation: (f) + 1 -> d
Operand: 0 ≤ f ≤ 127, d[0,1]
Status affected: -
Number of cycles: 1 or 2 depending on the result.
EXAMPLE :

LAB_01 INCFSZ REG,f ; Increment REG by one
LAB_02 ; Skip this line if result is 0
LAB_03 ; Jump here if result is 0
The content of program counter Before instruction execution, PC= LAB_01address.
The content of REG after instruction, REG = REG+1. If REG=0, the program counter points to the
address of label LAB_03. Otherwise, the program counter points to address of the next instruction,
i.e. to LAB_02 address.

IORLW - Inclusive OR literal with W

Syntax: [label] IORLW k
Description: The content of the W register is OR’ed with the 8-bit literal k. The result is stored in
register W.
Operation: (W) OR (k) -> W
Operand: 0 ≤ k ≤ 255
Status affected: -
Number of cycles: 1

EXAMPLE :
....
[label] IORLW 0x35
Before instruction execution: W = 0x9A
After instruction: W = 0xBF
 Z = 0

IORWF - Inclusive OR W with f

Syntax: [label] IORWF f, d
Description: The content of register f is OR’ed with the content of W register. If d = w or d = 0, the
result is stored in the W register. If d = f or d = 1, the result is stored in register f.
Operation: (W) OR (f) -> d
Operand: 0 ≤ f ≤ 127, d -> [0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....

 166

[label] IORWF REG,w
Before instruction execution: REG = 0x13,
 W = 0x91
After instruction: REG = 0x13,
 W = 0x93 Z = 0
EXAMPLE 2:
....
[label] IORWF REG,f
Before instruction execution: REG = 0x13,
 W = 0x91
After instruction: REG = 0x93,
 W = 0x91 Z = 0

MOVF - Move f

Syntax: [label] MOVF f, d
Description: The content of register f is moved to a destination determined by the operand d. If d =
w or d = 0, the content is moved to register W. If d = f or d = 1, the content remains in register f.
Option d = 1 is used to test the content of register f because this instruction affects the Z flag of the
STATUS register.
Operation: (f) -> d
Operand: 0 ≤ f ≤ 127, d -> [0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] MOVF FSR,w
Before instruction execution: FSR=0xC2
 W=0x00
After instruction: W=0xC2
 Z = 0

EXAMPLE 2:
....
[label] MOVF INDF,f
Before instruction execution: W=0x17
 FSR=0xC2, register at address 0xC2 contains the value 0x00
After instruction: W=0x17
 FSR=0xC2, register at address 0xC2 contains the value 0x00,
 Z = 1

MOVLW - Move literal to W

Syntax: [label] MOVLW k
Description: 8-bit literal k is moved to register W.
Operation: k -> (W)
Operand: 0 ≤ k ≤ 255
Status affected: -
Number of cycles: 1

 167

EXAMPLE 1:
....
[label] MOVLW 0x5A
After instruction: W=0x5A
EXAMPLE 2:
Const equ 0x40
[label] MOVLW Const
Before instruction execution: W=0x10
After instruction: W=0x40

MOVWF - Move W to f

Syntax: [label] MOVWF f
Description: The content of register W is moved to register f.
Operation: (W) -> f
Operand: 0 ≤ f ≤ 127
Status affected: -
Number of cycles: 1

EXAMPLE 1:
....
[label] MOVWF OPTION_REG
Before instruction execution: OPTION_REG=0x20
 W=0x40
After instruction: OPTION_REG=0x40
 W=0x40

EXAMPLE 2:
....
[label] MOVWF INDF
Before instruction execution: W=0x17
 FSR=0xC2, register at address 0xC2 contains the value 0x00
After instruction: W=0x17
 FSR=0xC2, register at address 0xC2 contains the value 0x17

NOP - No Operation

Syntax: [label] NOP
Description: No operation.
Operation: -
Operand: -
Status affected: -
Number of cycles: 1
EXAMPLE :
....
[label] NOP ; 1us delay (oscillator 4MHz)
Before instruction execution: PC = x
After instruction: PC = x + 1

 168

RETFIE - Return from Interrupt
Syntax: [labels] RETFIE
Description: Return from subroutine. The value is poped from the stack and loaded to the program
counter. Interrupts are enabled by setting the bit GIE of the INTCON register.
Operation: TOS -> PC, 1 -> GIE
Operand: -
Status affected: -
Number of cycles: 2
EXAMPLE :
....
[label] RETFIE
Before instruction execution: PC = x
 GIE (interrupt enable bit of the SATUS register) = 0
After instruction: PC = TOS (top of stack)
 GIE = 1

RETLW - Return with literal in W

Syntax: [label] RETLW k
Description: 8-bit literal k is loaded into register W. The value from the top of stack is loaded to
the program counter.
Operation: (k) -> W; top of stack (TOP) -> PC
Operand: -
Status affected: -
Number of cycles: 2

EXAMPLE :
....
[label] RETLW 0x43
Before instruction execution: W = x
 PC = x
 TOS (top of stack) = x
After instruction: W = 0x43
 PC = TOS (top of stack)
 TOS (top of stack) = TOS – 1

RETURN - Return from Subroutine

Syntax: [label] RETURN
Description: Return from subroutine. The value from the top of stack is loaded to the program
counter. This is a two-cycle instruction.
Operation: TOS -> program counter PC.
Operand: -
Status affected: -
Number of cycles: 2

EXAMPLE :
....
[label] RETURN

 169

Before instruction execution: PC = x
 TOS (top of stack) = x
After instruction: PC = TOS (top of stack)
 TOS (top of stack) = TOS – 1

RLF - Rotate Left f through Carry

Syntax: [label] RLF f, d
Description: The content of register f is rotated one bit to the left through the Carry flag. If d = w or
d = 0, the result is stored in register W. If d = f or d = 1, the result is stored in register f.
Operation: (f(n)) -> d(n+1), f(7) -> C, C -> d(0);
Operand: 0 ≤ f ≤ 127, d[0,1]
Status affected: C
Number of cycles: 1

EXAMPLE 1:
....
[label] RLF REG,w
Before instruction execution: REG = 1110 0110
 C = 0
After instruction: REG = 1110 0110
 W = 1100 1100
 C = 1

EXAMPLE 2:
....
[label] RLF REG,f
Before instruction execution: REG = 1110 0110
 C = 0
After instruction: REG = 1100 1100
 C = 1

RRF - Rotate Right f through Carry

Syntax: [label] RRF f, d
Description: The content of register f is rotated one bit right through the Carry flag. If d = w or d =
0, the result is stored in register W. If d = f or d = 1, the result is stored in register f.
Operation: (f(n)) -> d(n-1), f(0) -> C, C -> d(7);
Operand: 0 ≤ f ≤ 127, d -> [0,1]
Status affected: C
Number of cycles: 1

EXAMPLE 1:
....
[label] RRF REG,w
Before instruction execution: REG = 1110 0110
 W = x
 C = 0
After instruction: REG = 1110 0110
 W = 0111 0011
 C = 0

 170

EXAMPLE 2:
....
[label] RRF REG,f
Before instruction execution: REG = 1110 0110, C = 0
After instruction: REG = 0111 0011, C = 0

SLEEP - Enter Sleep mode

Syntax: [label] SLEEP
Description: The processor enters sleep mode. The oscillator is stopped. PD bit (Power Down) of
the STATUS register is cleared. TO bit of the same register is set. The WDT and its prescaler are
cleared.
Operation: 0 -> WDT, 0 -> WDT prescaler, 1 -> TO, 0 -> PD
Operand: -
Status affected: TO, PD
Number of cycles: 1

EXAMPLE :
....
[label] SLEEP
Before instruction execution: WDT counter = x
 WDT prescaler = x
After instruction: WDT counter = 0x00
 WDT prescaler = 0
 TO = 1
 PD = 0

SUBLW - Subtract W from literal

Syntax: [label] SUBLW k
Description: The content of register W is subtracted from the literal k. The result is stored in
register W.
Operation: k - (W) -> W
Operand: 0 ≤ k ≤ 255
Status affected: C, DC, Z
Number of cycles: 1

EXAMPLE :
....
[label] SUBLW 0x03
Before instruction execution: W = 0x01, C = x, Z = x
After instruction: W = 0x02, C = 1, Z = 0 result is positive

Before instruction execution: W = 0x03, C = x, Z = x
After instruction: W = 0x00, C = 1, Z = 1 result is 0

Before instruction execution: W = 0x04, C = x, Z = x
After instruction: W = 0xFF, C = 0, Z = 0 result is negative

 171

SUBWF - Subtract W from f

Syntax: [label] SUBWF f, d
Description: The content of register W is subtracted from register f.
If d = w or d = 0, the result is stored in register W. If d = f or d = 1, the result is stored in register f.
Operation: (f) - (W) -> d
Operand: 0 ≤ f ≤ 127, d [0,1]
Status affected: C, DC, Z
Number of cycles: 1

EXAMPLE :
....
[label] SUBWF REG,f
Before instruction execution: REG = 3, W = 2, C = x, Z = x
After instruction: REG = 1, W = 2, C = 1, Z = 0 result is positive

Before instruction execution: REG = 2, W = 2, C = x, Z = x
After instruction: REG = 0, W = 2, C = 1, Z = 1 result is 0

Before instruction execution: REG = 1, W = 2, C = x, Z = x
After instruction: REG = 0xFF, W = 2, C = 0, Z = 0 result is negative

SWAPF - Swap Nibbles in f

Syntax: [label] SWAPF f, d
Description: The upper and lower nibbles of register f are swapped. If d = w or d = 0, the result is
stored in register W. If d = f or d = 1, the result is stored in register f.
Operation: f(0:3) -> d(4:7), f(4:7) -> d(0:3);
Operand: 0 ≤ f ≤ 127, d [0,1]
Status affected: -
Number of cycles: 1

EXAMPLE 1:
....
[label] SWAPF REG,w
Before instruction execution: REG=0xF3
After instruction: REG=0xF3
 W = 0x3F
EXAMPLE 2:
....
[label] SWAPF REG,f
Before instruction execution: REG=0xF3
After instruction: REG=0x3F

XORLW - Exclusive OR literal with W

Syntax: [label] XORLW k
Description: The content of register W is XOR’ed with the 8-bit literal k . The result is stored in
register W.

 172

Operation: (W) .XOR. k -> W
Operand: 0 ≤ k ≤ 255
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] XORLW 0xAF
Before instruction execution: W = 0xB5 ; 1011 0101 (0xB5)
 ; 1010 1111 (0xAF)

After instruction: W = 0x1A ; 0001 1010 (0x1A)
 Z = 0
EXAMPLE 2:
Const equ 0x37
[label] XORLW Const
Before instruction execution: W=0xAF ; 1010 1111 (0xAF)
 Const = 0x37 ; 0011 0111 (0x37)

After instruction: W = 0x98 ; 1001 1000 (0x98)
 Z = 0

XORWF - Exclusive OR W with f

Syntax: [label] XORWF f, d
Description: The content of register f is XOR’ed with the content of register W. A bit of result is
set only in case the corresponding bits of operands are different. If d = w or d = 0, the result is
stored in register W. If d = f or d = 1, the result is stored in register f.
Operation: (W) .XOR. k -> d
Operand: 0 ≤ f ≤ 127, d[0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:
....
[label] XORWF REG,f
Before instruction execution: REG = 0xAF, W = 0xB5 ; 1010 1111 (0xAF)
 ; 1011 0101 (0xB5)

After instruction: REG = 0x1A, W = 0xB5 ; 0001 1010 (0x1A)

EXAMPLE 2:
....
[label] XORWF REG,w
Before instruction execution: REG = 0xAF, W = 0xB5 ; 1010 1111 (0xAF)
 ; 1011 0101 (0xB5)

After instruction: REG = 0xAF, W = 0x1A ; 0001 1010 (0x1A)

 173

In addition to the preceding instructions, Microchip has also introduced some other instructions.
More precisely, they are not instructions as such, but macros supported by MPLAB. Microchip
calls them “Special Instructions” since all of them are in fact obtained by combining already.

Instruction Description Equivalent Instruction Status Affected

ADDCF f,d Add with carry
BTFSC
INCF

STATUS,C

ADDDCF f,d Add with Digit Carry
BTFSC
INCF

STATUS,DC

B k Branch GOTO

BC k Branch on Carry
BTFSC
GOTO

STATUS,C

BDC k Branch on Digit Carry
BTFSC
GOTO

STATUS,DC

BNC k Branch on No Carry
BTFSS
GOTO

STATUS,C

BNDC k Branch on No Digit Carry
BTFSS
GOTO

STATUS,DC

BNZ k Branch on No Zero
BTFSS
GOTO

STATUS,Z

BZ k Branch on Zero
BTFSC
GOTO

STATUS,Z

CLRC Clear Carry BCF STATUS,C

CLRDC Clear Digit Carry BCF STATUS,DC

CLRZ Clear Zero BCF STATUS,Z

MOVFW f Move File to W MOVF

SETC f Set Carry BSF STATUS,C

SETDC Set Digit Carry BSF STATUS,DC

SETZ Set Zero BSF STATUS,Z

SKPC Skip on Carry BTFSS STATUS,C

SKPDC Skip on Digit Carry BTFSS STATUS,DC

SKPNC Skip on No Carry BTFSC STATUS,Z

SKPNDC Skip on No Digit Carry BTFSC STATUS,DC

SKPNZ Skip on Non Zero BTFSC STATUS,Z

SKPZ Skip on Zero BTFSS STATUS,Z

SUBCF f, d Subtract Carry from File
BTFSC
DECF

STATUS,C

SUBDCF f, d
Subtract Digit Carry from
File

BTFSC
DECF

STATUS,DC

TSTF f Test File MOVF

 174

Appendix A: Programming a Microcontroller

Microcontroller and humans communicate through the medium of the programming language
called Assembly language. The word “Assembler” itself does not have any deeper meaning, it
corresponds to the names of other languages such as English or Franch. More precisely, assembly
language is only a passing solution. In order the microcontroller can understand a program written
in assembly language, it must be compiled into a “language of zeros and ones”. “Assembly
language” and “Assembler” do not have the same meaning. The first one refers to the set of rules
used for writing program for the microcontroller, while later refers to a program on personal PC
used to translate assembly language statements into the language of zeros and ones. A compiled
program is also called a “machine code”. “Program” is a data file stored on a computer hard disc
(or in memory of the microcontroller if loaded) and written according to the rules of assembly or
some other programming language. Assembly language is understandable for the humans because
it consists of meaningful words and symbols of alphabet. Let us take for example the command
“RETURN” which is, as its name indicates, used to return the microcontroller from a subroutine.
In machine code, the same command is represented by a 14-bit array of zeros and ones
understandable for the microcontroller. All assembly language commands are similarly compiled
into the corresponding array of zeros and ones. A data file used for storing compiled program is
called “executive file”, i.e. “HEX data file”. The name runs from hexadecimal presentation of data
file and suffix “hex” as well, for example “probe.hex”. After has been generated, data file is loaded
into the microcontroller using programmer. Assembly language program may be written in any
program for text processing (editor) able to create ASCII data file on a hard disc or in a specialized
work environment such as MPLAB described later.

ELEMENTS OF ASSEMBLY LANGUAGE

A program written in assembly language consists of several elements being differently interpreted
during compiling program into executable data file. The usage of these elements by strict rules and
it is necessary to pay special attention to them during program writing in order to avoid errors.

ASSEMBLY LANGUAGE SYNTAX

As mentioned, it is necessary to observe some specific rules in order to enable the process of
compiling into executive HEX code to run without errors. These compulsory rules explaining how
sequences of expressions are put together to form the statements that make up an assembly
language program are called syntax. There are only several of them:

 175

• Every program line may consist of maximum 255 characters.
• Every program line that is to be compiled must start with a symbol, a label, mnemonics or

directive.
• A text following the mark “;” in a program line represents a comment which is ignored by

assembler (not compiled).
• All the elements of one program line (labels, instructions etc.) must be separat ed by at least

one space character. For the sake of better clearness, a push-button TAB is commonly used
instead of it, so that it is easy to delimit columns with labels, directives etc. in a program.

LABELS

A label represents a textual version of some address in ROM or RAM memory. Each label has to
start in the first column with a letter of alphabet or “_” and may consist of maximum 32 characters.
Besides, It is easily used:

• It is sufficient to enter the name of a label instead of 16-bit address in instruc tion which
calls some subroutine or a jump. The label with the same name should be also written at the
beginning of a program line in which a subroutine starts or where a jump should be
executed. As a general rule, labels have easily recognizable names.

During program compiling, assembler will automatically replace the labels by the corresponding
addresses.

COMMENTS

Acomment is often an explanatory text written by the programmer in order to make a program
clearer and easier to understand. It is not necessary to comment every line. When three or four lines
of code work together to accomplish some higher level task, it is better to have a single higher
level comment for the group of lines. Therefore, it is added if needed and has to start with “;”.
Comments added to assembly source code are not compiled into machine code.

 176

INSTRUCTIONS

Instructions are defined for each microcontroller family by the manufacturer. Therefore, it is up to
the user to follow the rules of their usage. The way of writing instructions is also called instruction
syntax. The instructions “movlp” and “gotto”, in the following example, are recognized by the
PIC16F887 microcontroller as an error since they are not correctly written.

OPERANDS

An operand is a value (an argument) upon which the instruction, named by mnemonic, operates.
The operands may be a register, a variable, a literal constant, a label or a memory address.

DIRECTIVES

Unlike instructions being written to on-chip program memory after compilation, directives are
commands of assembly language itself and do not directly affect the operation of the
microcontroller. Some of them must be used in every program while others are only used to
facilitate or enhance the operation. Directives are written to the column reserved for instructions.
The rule which must be observed allows only one directive per program line.

This section covers only a few of the most commonly used directives. It would certainly take up
too much space and time to describe all the directives recognized by the MPLAB program.
Anyway, a complete list containing all directives which MPLAB assembler can understand is
provided in Help.

 177

PROCESSOR Directive

This directive must be written at the beginning of each program. It defines the type of the
microcontroller which the program is written for. For example:

Processor 16f887

EQU directive

This directive is used to replace a numeric value by a symbol. In that way, some specific location
in memory is assigned a name. For example:

MAXIMUM EQU H’25’

This means that a memory location at address 25 (hex.) is assigned the name “MAXIMUM”.
Every appearance of the label “MAXIMUM” in the program will be interpreted by assembler as
the address 25 (MAXIMUM = H’25’). Besides, symbols may be defined this way only once in a
program so that this directive is mostly used at the beginning of the program.

ORG directive

This directive specifies a location in program memory where the program following directive is to
be placed. For example:

 ORG 0x100
START
 ...
 ORG 0x1000
TABLE ...
 ...
This program starts at location 0x100. The table containing data is to be stored at location 1024
(1000h).

END directive

Each program must be ended by using this directive. Once a program encounters this directive, the
assembler immediately stops compiling. For example:
...
END ;End of program

$INCLUDE directive

The name of this directive tells enough about its purpose. During compiling, it enables assembler
to use data contained in another file on a computer hard disc. For example:

...
#include <p16f887.inc>

 178

CBLOCK and ENDC directives

All variables (their names and addresses) that will be used in a program must be defined at the
beginning of the program. Because of that it is not necessary to specify the address of each
specified variable later in the program. Instead of that, it is enough to specify the address of the
first one by using directive CBLOCK and list all others afterwards. Compiler automatically assigns
these variables the corresponding addresses as per order they are listed. At last, directive ENDC
indicates end of the list of variables.

CBLOCK 0x20
 START ; address 0x20
 RELE ; address 0x21
 STOP ; address 0x22
 LEFT ; address 0x23
 RIGHT ; address 0x24
ENDC
 ...
IF, ENDIF and ELSE directives

These directives are used to create so called conditional blocks in a program. Each of these blocks
starts with directive IF and ends with directive ENDIF or ELSE. A statement or a symbol (in
parentheses) following the directive IF represents a condition which determines which part of the
program is to be compiled:

• If the statement is correct or the value of a symbol is equal to one, program compiles all
instructions written before directive ELSE or ENDIF.

• If the statement is not correct or the value of a symbol is equal to zero, only instructions
written after directives ELSE or ENDIF are to be compiled.

Example 1:

IF (VERSION>3)
 CALL Table_2
 CALL
ENDIF
 ...
If the program is released after the version 3 (statement is right) then subroutines “Table 2” and
“Extension” are executed. If the statement in parentheses is wrong (VERSION<3), two instructions
calling subroutines are ignored and will not be compiled therefore.

Example 2:

If the value of symbol “Model” is equal to one then first two instructions after directive IF are
compiled as well as instructions after directive ENDIF (all instructions between ELSE and ENDIF
are ignored). Otherwise, if Model=0 then instructions between IF and ELSE are ignored, whereas
instructions after directive ELSE are compiled.

IF (Model)
 MOVFW BUFFER
 MOVWF MAXIMUM
ELSE

 179

 MOVFW BUFFER1
 MOVWF MAXIMUM
ENDIF
 ...

BANKSEL directive

In order to access some SFR register it is necessary to select the appropriate bank in RAM memory
by using bits RP0 and RP1 of the STATUS register. This directive is used in that case. Simply,
since “inc” data file contains the list of all registers along with their addresses, assembler knows
which bank corresponds to which register. After encountering this directive, assembler selects the
bits RP0 and RP1 for the specified register on its own. For example:
 ...
BANKSEL TRISB
 CLRF TRISB
 MOVLW B’01001101’
BANKSEL PORTB
 MOVWF PORTB
 ...

EXAMPLE OF HOW TO WRITE A PROGRAM

The following example illustrates what a simple program written in assembly language looks like.

Apart from the regular rules of assembly language, there are also some unwritten rules which
should be observed during program writing. One of them is to write in a few words at the

 180

beginning of a program what the program’s name is, what it is used for, version, release date, type
of the microcontroller it is written for and the name of the programmer. Since these data are not of
importance for assembler, they are written as a comment which always starts with semicolon ‘;’
and can be written in a new line or immediately after a command.

After writing this general comment, it is time to select the microcontroller by using directive
PROCESSOR. This directive is followed by another one used to include all the definitions of the
PIC16F887 microcontroller’s internal registers in the program. These definitions are nothing but
ability to address port B and other registers as PORTB instead of 06h, which makes the program
clearer and more legible.

In order the microcontroller may operate properly, a several parameters such as type of oscillator,
state of the watch-dog and internal reset circuit must be defined. It is done by means of the
following directive:

_CONFIG _CP_OFF&_WDT_OFF&PWRTE_ON&XT_OSC

When all necessary elements are defined, the process of program writing can start. First and
foremost, it is necessary to specify address from which the microcontroller starts when the power
goes on (org 0x00) as well as address from which the program proceeds with execution if an
interrupt occurs (org 0x04). Since this program is very simple, it is enough to use command “goto
Main” in order to direct the microcontroller to the beginning of the program. Next command selects
memory bank 1 in order to enable access to the TRISB register to configure port B as output
(banksel TRISB). The main program ends by selecting memory bank 0 and setting all port B pins
to logic one (1)(movlw 0xFF, movwf PORTB).

Besides, it is necessary to create a loop to keep program from “getting lost” in case an error occurs.
For that purpose, there is an endless loop executed all the time while the microcontroller is
switched on.

“end” is required at the end of every program to inform assembler that there are no more
commands to be compiled.

DATA FILES RESULTING FROM PROGRAM COMPILING

The result of compiling a program written in assembly language are data files. The most important
and most commonly used data files are:

• Executive data file (Program_Name.HEX)
• Error data file (Program_Name.ERR)
• List data file (Program_Name.LST)

The first one contains compiled program which is loaded into the microcontroller. Its contents give
no information of importance to the programmer so it will not be discussed here. The second one
contains errors made in writing process and detected by the compiler during compiling process.
Errors can be also detected in data file list, which takes more time, so the error data file is more
suitable for long programs.

The third one is the most useful for the programmer. It contains many information on commands
and variables locations in on-chip memory as well as error signalization. There is a symbol table at

 181

the end of each data file list containing all the symbols used in a program. Another useful elements
of data file list are memory usage map and error statistic provided at the very end of the file list.

MACROS AND SUBROUTINES

The same sequence of computing instructions is usually used repeatedly within a program.
Assembly language is very demanding. The programmer is required to take care of the least detail
when writing a program, because only one wrong command or label name may cause the program
does not work properly or does not work at all. Therefore, it is less tedious and less error-prone to
use a sequence of instructions as a single program statement which works properly for sure. To
implement this idea, macros and subroutines are used.

MACROS

A macro contains programmer-defined symbols that stand for some sequence of text lines. It is
defined by using directive macro which names macro and arguments if needed. Macro must be
defined prior it is used. Once a macro has been defined, its name may be used in the
program.When the assembler encounters macro’s name, it replaces it by the appropriate sequence
of instructions and processes them just as though they have appeared in the program. Many
different macro-instructions are available for various purposes, eliminating some of the
repetitiveness of the programming, as well as simplifying the writing, reading and understanding of
the program. The simplest use of macros may be giving a name to an instruction sequence being
repeated. Let us take for example global interrupt enable procedure, SFRs' bank selection.

macro_name macro arg1, arg2...
 ...
 sequence of instructions
 ...
 endm

The main difference between macros and subroutines is that macro is after compiling replaced by
its code (enables the programmer to type less). It may also have arguments while subroutine uses
less memory, but does not have arguments.

The following example shows four macros. First two macros select banks, the third one enables
interrupt, whereas the fourth one disables interrupt.

bank0 macro ; Macro bank0
 bcf STATUS, RP0 ; Reset RP0 bit
 bcf STATUS, RP1 ; Reset RP1 bit
 endm ; End of macro
bank1 macro ; Macro bank1
 bsf STATUS, RP0 ; Set RP0 bit
 bcf STATUS, RP1 ; Reset RP1 bit
 endm ; End of macro
enableint macro ; Global interrupt enable
 bsf INTCON,7 ; Set bit
 endm ; End of macro
disableint macro ; Global interrupt disable
 bcf INTCON,7 ; Reset bit
 endm ; End of macro

 182

Macros defined in this way are saved in a particular data file with extension INC which stands for
INCLUDE data file. As seen, these four macros do not have arguments. However, macros may
include arguments if needed.
The following example shows macros with arguments. Pin is configured as input if the
corresponding bit of the TRIS register is set to logic one (bank1). Otherwise, it is configured as
output.

input macro arg1,arg2 ;Macro Input
 bank1 ;Bank containing TRIS registers
 bsf arg1,arg2 ;Set the specified bit (1=Input)
 bank0 ;Macro for bank 0 selection
 endm ;End of macro

output macro arg1,arg2 ;Macro Output
 bank1 ;Bank containing TRIS registers
 bcf arg1,arg2 ;Clear the specified bit (0=Output)
 bank0 ;Macro for bank 0 selection
 endm ;End of macro

Macro with arguments may be called in the following way:

...
output TRISB,7 ;Pin RB7 is configured as output
...

When calling this macro, the first specified argument TRISB is replaced by the first argument arg1
in macro definition. Similarly, number 7 is replaced by the argument arg2, and the following code
is generated:
...
bsf STATUS, RP0 ;Set RP0 bit = BANK1
bcf STATUS, RP1 ;Reset RP0 bit = BANK1

bcf TRISB,7 ;Configure RB7 as output

bcf STATUS,RP0 ;Clear RP0 bit = BANK0
bcf STATUS,RP1 ;Clear RP1 bit = BANK0
...

It is clear at first sight that the program becomes more legible and flexible by using macros. The
main disadvantage of macro is that it occupies a lot of memory space because every macro name in
a program is replaced by its predefined code. Owing to the fact that program often uses macro,
everything is more complicated if it is long.

callc macro label ;Macro callc
local Exit ;Define local Label within macro
 bnc Exit ;If C=0 jump to Exit
 call label ;If C=1 call subroutine at address Label(out of macro)
Exit ;Local Label within macro
 endm ;End of macro

 183

In case a macro has labels, they must be defined as local ones by using directive local. The given
example contains macro which calls a subroutine (call label in this case) if the Carry bit of the
STATUS register is set. Otherwise, the first following instruction is executed.

SUBROUTINES

Asubroutine contains a sequence of instructions, begins with a label (subroutine_name) and ends
with command return or retlw. The main difference comparing to macro is that subroutine is not
replaced by its code in the program, but program jumps to subroutine to execute it. It happens
every time the assembler encounters command call Subroutine_name in the program. On the
command return, it leaves a subroutine and continues execution from where it left off the main
program. Subroutine may be defined both prior or upon the call.

As seen, concerning macros, the input and output arguments are of great importance. Concerning
subroutines, it is not possible to define arguments within the subroutine itself. However, variables
predefined in the main program may be used as subroutine arguments.

A logical sequence of events is as follows: defining variables, calling subroutine which uses them
and at the end reading variables changed upon the execution of subroutine.

The program in the following example performs addition of two 2-byte variables ARG1 and ARG2
and moves result to the variable RES. When 2-byte variables are used, it is necessary to define
higher and lower byte for each of them. The program itself is very simple. It first adds lower bytes
of variables ARG1 and ARG2 and higher afterwards. If the sum of addition of two lower bytes is
greater than 255 (maximal byte value) the remainder is added to the RESH variable.

; Program to add two 16-bit numbers
; Version: 1.0 Date: April 25, 2007 MCU:PIC16F887

 PROCESSOR 16f887 ; Defining processor
 #include "p16f887.inc" ; Microchip INC database
 __CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_OSC

 Cblock 0x20 ; Beginning of RAM
 ARG1H ; Argument 1 higher byte
 ARG1L ; Argument 1 lower byte
 ARG2H ; Argument 2 higher byte
 ARG2L ; Argument 2 lower byte
 RESH ; Result higher byte

 184

 RESL ; Result lower byte
 endc ; End of variables
 ORG 0x00 ; Reset vector
 goto Start
Start ; Write values to variables
 movlw 0x01 ; ARG1=0x0104
 movwf ARG1H
 movlw 0x04
 movwf ARG1L
 movlw 0x07 ; ARG2=0x0705
 movwf ARG2H
 movlw 0x05
 movwf ARG2L
Main ; Main program
 call Add16 ; Call subroutine Add16
Loop goto Loop ; Remain here
Add16 ; Subroutine to add two 16-bit numbers
 clrf RESH ; RESH=0
 movf ARG1L,w ; w=ARG1L
 addwf ARG2L,w ; w=w+ARG2L
 movwf RESL ; RESL=w
 btfsc STATUS,C ; Is the result greater than 255?
 incf RESH,f ; If greater, increment RESH by one

 movf ARG1H,w ; w=ARG1H
 addwf ARG2H,w ; w=w+ARG2
 addwf RESH,f ; RESH=w
 return ; Return from subroutine
 end ; End of program

MPLAB

MPLAB is a Windows program package which enables easy program writing as well as easy
program development. It is best to describe it as development environment for some standard
program language designed for PC programming. MPLAB technically simplifies some operations
consisting of a lot of parameters, which until IDE environment* has appeared, were executed from
command line. However, tastes are different and still there are some programmers who prefer
standard editors and command line compilers. Every program written in MPLAB is clear, but there
is also help documentation- just in case.

INSTALLING MPLAB

MPLAB consists of several parts:

• program which sorts data files of the same project into one group (Project Manager)
• program for text generating and processing (Text Editor)
• simulator used to simulate the operation of a program loaded into the microcontroller

Besides, there are also built in programmers such as PICStart Plus and ICD (In Circuit Debugger)
that can be used to program software into PIC microcontroller device. Since not being the subject
of this book, they are mentioned as options only.

 185

In order to start MPLAB, your PC should contain:

• PC compatible computer belonging to class 486 or better
• Any Windows operating system
• VGA graphic card
• 8MB memory (32MB recommended)
• 200MB available hard disc
• Mouse

MPLAB installation comes first. Data files from MPLAB CD should be copied to a hard disc.
Every window has a push-button enabling return to the previous window so that possible mistakes
should not cause any problem nor be a stressful experience at all. The process of installation is
similar to almost all other Windows programs installations. First of all a welcome window appears,
then options to select and at last installation itself. After all, a message notifying that the program
is successfully installed and ready for use appears. Are you ready?

*IDE stands for “Integrated Development Environment”.

Steps to follow prior the installation:

1. Start Microsoft Windows
2. Insert the CD into CD ROM
3. Click START and select option RUN
4. Click BROWSE and select CD ROM drive
5. Find folder MPLAB on CD ROM

Everything is ready now to start installation. The following pictures describe some installation
steps.

Click on this icon to start up the process...

Something is going on... Picture coming up indicates that the process of installation has just
started!

 186

Next window contains the word “Welcome”. Need explanation?
Actually, the program reminds you to close all active programs in order to not interfere the
installation process. Next- of course!

Prior to continue, you have to accept the MPLAB software license conditions. Select the option “I
accept” and click NEXT.

 187

Do you want to install the entire software? Why to complicate? Next...

Similar to other programs, MPLAB should be also installed into a folder. It may be any folder on
any hard disc. If it is not necessary to make some changes, select the specified address and click
Next.

 188

Another license, another acceptance of option specified by the computer... Next, Next...
Be patient!

Finally! This is what you have been waiting for. Click Finish. The computer will be reset along
with the program saved on hard disc. Everything is OK!
Click the MPLAB desktop icon in order to start the program and learn about it.

 189

As seen, MPLAB is similar to most Windows programs. Apart from working area, there are menu
(contains options: File, Edit etc.), toolbar (contains different icons) and status bar at the bottom of
the window. Similar to Windows, there is a rule to have shortcuts for the most commonly used
program options created in order to easily access them and speed up operation therefore. These
shortcuts are actually icons below menu bar. In other words, all options contained in toolbar are
contained in menu too.

PROJECT-MAKING

Follow these steps to prepare program for loading into the microcontroller:

1. Make a project
2. Write a program
3. Compile it

In order to make a project, it is necessary to click the option “PROJECT” and “PROJECT
WIZARD” afterwards. A welcome window appears.

 190

Keep on project-making by clicking NEXT. Then select the microcontroller for use.
In our case, it is PIC16F887 microcontroller.
At the end, the project is assigned a name which usually indicates the purpose and the content of
the program being written. The project should be moved to desirable folder. It is best the folder
associates with PIC microcontrollers (See figure).

 191

Documents contained in the project do not always need to be written in MPLAB. Documents
written in some other program may be also included in the project. In this case, there are no such
documents. Just click Next.

Click FINISH to complete the project. The window itself contains project parameters.

 192

WRITING A NEW PROGRAM

When the project is made, a widow shown in figure below appears.

The next step is to write a program. Open a new document by clicking File>New. Text Editor in
MPLAB environment appears.

Save the document in the folder D:\PIC projects by using the File>Save As command and name it
“Blink.asm” indicating that this program is to be an example of port diode blinking.

 193

After the “Blink.asm” is created and saved, it should be included in the project by right click on the
“Source Files” option in the “Proba.mcw” window. After that, a small window with two options
appears. Select the first one “Add Files”.
Click on that option opens another window containing the folder PIC along with the document
Blink.asm. See figure below.

Click “Blink” to include the document Blink.asm into the project.

Program writing

The program writing procedure cannot start until all previous operations have been performed.
Program written below is a simple illustration of project-making.

;Program to set port B pins to logic one (1).
;Version: 1.0 Date: April 25,2007 MCU: PIC16F887 Programmer: John Smith

;***** Declaration and configuration of the microcontroller *****

 PROCESSOR 16f887
 #include "p16f887.inc"
 __CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_OSC

;***** Variable declaration *****

 Cblock 0x20 ; First free RAM location
 endc ; No variables

;;***** Program memory structure *****

 ORG 0x00 ; Reset vector
 goto Main ; After reset jump to this location

 194

 ORG 0x04 ; Interrupt vector
 goto Main ; No interrupt routine
Main ; Start the program
 banksel TRISB ; Select bank containing TRISB
 clrf TRISB ; Port B is configured as output
 banksel PORTB ; Select bank containing PORTB
 movlw 0xff ; W=FF
 movwf PORTB ; Move W to port B
Loop goto Loop ; Jump to label Loop

 End

The program should be written to the ‘Blink.asm’ window or copied from disc by means of options
copy/paste. When copied, the program should be compiled into executable HEX format by using
option PROJECT -> BUILD ALL. A new window appears. The last sentence is the most important
because it tells us whether compiling has succeeded or not. Clearly, ’BUILD SUCCEEDED’
message means that no error occurred and compiling has been successfully done.

In case some error occurs, it is necessary to click twice on the message referring to it in the
‘Output’ window, which automatically switch you over to assembly program, directly to the line
where the error has occurred.

 195

SIMULATOR

Asimulator is a part of MPLAB environment which provides better insight into the operation of the
microcontroller. Generally speaking, a simulation is an attempt to model a real-life or hypothetical
situation so that it can be studied to see how the system works. By means of simulator, it is also
possible to monitor current values of variables, registers and port pins states as well. To be honest,
a simulator is not of the same importance for all programs. If a program is simpler (as in our
example), the simulation is not of great importance because setting port B pins to logic one (1) is
not complicated at all. However, in more complex programs containing timers, different conditions
and requests (especially mathematical operations), the simulator may be of great use. As the name
itself indicates, a simulation means to simulate the operation of microcontroller. Like the
microcontroller, a simulator executes instructions one after another (line by line) and constantly
updates the state of all registers. In that way, the user simply monitors program execution. At the
end of program writing, the user should first test it in simulator prior to execute it in a real
environment. Unfortunately, this is one of many good things being ignored by the man because of
its character as such and lack of high-quality simulators as well.

Simulator is activated by clicking on DEBUGGER > SELECT TOOL > MPLAB SIM, as shown in
figure. As a result, several icons related to simulator only appears. Their meanings are as follows:

Starts program execution at full speed. In this case, simulator executes program at full speed until it
is halted by clicking the icon below.

Halts program execution at full speed. Program can continue executing step by step or at full speed
again.

Starts program execution at optional speed. The speed of execution is set in dialog
Debugger/Settings/Animation/Realtime Updates.

 196

Starts step-by-step program execution. Instructions are executed one after another. Furthermore,
click on this icon enables to step into subroutines and macros.

This icon has the same function like the previous one except the ability to step into subroutines.

Resets microcontroller. By clicking this icon, the program counter is positioned at the beginning of
the program and simulation can start.

Similar to real environment, the first thing that should be done is to reset the microcontroller using
the option DEBUGGER > RESET or by clicking reset icon. As the consequence of that, a green
line is positioned at the beginning of the program and program counter PCL is cleared to zero.
Refer to the window Special Function Registers shown below.

Apart from SFRs, it is good to have insight in File Registers. A window containing them appears
by clicking the VIEW->FILE REGISTERS option.

 197

If the program contains variables, it is good to monitor their values as well. Each variable is
assigned a window (Watch Windows) by clicking VIEW->WATCH option.

If the program contains variables, it is good to monitor their values as well. Each variable is
assigned a window (Watch Windows) by clicking VIEW->WATCH option.

After all variables and registers of interest become available on the simulator working area, the
process of simulation can start. The next instruction may be either Step into or Step over depending
on whether you want to step into subroutine or not. The same instructions may be set by using
keyboard- push-buttons <F7> or <F8> (generally, all important instructions have the
corresponding pushbuttons on the keyboard).

 198

Appendix B: Examples

The purpose of this chapter is to provide basic information about microcontrollers that one needs to
know in order to be able to use them successfully in practice. This chapter, therefore, does not
contain any super interesting program or device schematic with amazing solutions. Instead of that,
given examples are more proof that program writing is neither a privilege nor a talent issue but the
ability of simple putting puzzle pieces together using directives. You will be assure that design and
development of devices mainly comes to the method “test-correct-repeat”. Of course, the more you
are in it the more complicated it becomes since the puzzle pieces are put together by both children
and first-class architects...

BASIC CONNECTING

As seen in figure below, in order to enable the microcontroller to operate properly it is necessary to
provide:

• Power Supply
• Reset Signal
• Clock Signal

Clearly, it is about simple circuits, but it does not have to be always like that. If target device is
used for controlling expensive machines or maintaining vital functions, everything gets more and
more complicated! However, this solution is quite good for the time being...

POWER SUPPLY

Even though the PIC16F887 can operate at different supply voltages, why to test “Marphy’s
low”?! 5V power supply is so common that it simply imposes itself. The circuit, shown in previous

 199

figure, uses a cheap integrated three-terminal positive regulator LM7805 and provides high-quality
voltage level and guite enough current to enable microcontroller and peripheral electronics to
operate normally (enough in this case means 1A)!

RESET SIGNAL

In order that the microcontroller can operate properly, a logic one (VCC) must be applied on reset
pin (It explains the connection pin-resistor 10K-VCC). Push-button connecting reset pin MCLR to
GND is not necessary. However, it is almost always provided because it enables microcontroller
safe return to normal operating conditions if something goes wrong. By pushing this button, 0V is
brought to the pin, the microcontroller is reset and program execution starts from the beginning.

CLOCK SIGNAL

Even though the microcontroller has built in oscillator, it cannot operate without external
components which stabilize its operation and determine its frequency (operating speed of the
microcontroller). Depending on which elements are in use as well as their frequencies, the
oscillator can be run in four different modes:

• LP - Low Power Crystal
• XT - Crystal / Resonator
• HS - High speed Crystal / Resonator
• RC - Resistor / Capacitor

Why are these modes so important? Owing to the fact that it is almost impossible to make
oscillator which operates stablely over a wide frequency range, the microcontroller must know
which crystal is connected in order that it can adjust the operation of its internal electronics to it.
That is why all programs used for chip loading contains an option for oscillator mode selection.
See figure.

 200

Quartz resonator

In case a quartz crystal is used for frequency stabilization, the built in oscillator operates at very
precise frequency which is independent from changes in temperature and voltage power supply as
well. This frequency is normally labeled on the microcontroller package.
Apart from the crystal, in this case the capacitors C1 and C2 must be also connected as per scheme
below. Their capacitance is not of great importance, therefore, the values provided in the table
should be considered as a recommendation rather than a strict rule.

Ceramic resonator

Ceramic resonator is cheaper, but very similar to quartz by its function and the way of operating.
That is why the schemes illustrating their connection to the microcontroller are identical. However,
the capacitor value is a bit different in this case due to different electric features. Refer to the table.

These oscillators are used when it is not necessary to have extremely precise frequency.

 201

RC oscillator

If the operating frequency is not of importance then there is no need to built in expensive
components for stabilization. Instead of that, a simple RC network, as shown in figure below, will
be enough. Since only the input of the local oscillator input is in use here, clock signal with
frequency Fosc/4 will appear on the OSC2 pin. Furthermore, that frequency represents at the same
time a precise operating frequency of the microcontroller, i.e. the speed of instruction execution.

External oscillator

If it is needed to synchronize the operation of several microcontrollers or if for some reason it is
not possible to use any of the previous schemes, a clock signal may be generated by an external
oscillator. Refer to figure below.

ADDITIONAL COMPONENTS

Regardless of the fact that the microcontroller is a product of modern technology, it is not of any
use without being connected to additional components. Simply, the appearance of voltage on the
microcontroller pins means nothing if not used for performing certain operations (turn something
on/off, shift, display etc.).

This section intentionally covers only the most commonly used additional components in practice
such as resistors, transistors, LED diodes, LED displays, LCD displays and RS232 communication
circuits.

 202

SWITCHES AND PUSH-BUTTONS

There is nothing simpler than switches and push-buttons! This is definitely the simplest way of
detecting appearance of some voltage on the microcontroller input pin and there is no need for
additional explanation of how these components operate. Nevertheless, it is not so simple in
practice... Then, what is it all about?

It is about contact bounce- a common problem with mechanical switches. When the contacts strike
together, their momentum and elasticity act together to cause bounce. The result is a rapidly pulsed
electrical current instead of a clean transition from zero to full current. Generally, it mostly occurs
due to vibrations, slight rough spots and dirt between contacts. This effect is usually unnoticeable
when using these components in everyday life because the bounce happens too quickly to affect
most equipment, but causes problems in some analogue and logic circuits that respond fast enough
to misinterprete the on-off pulses as a data stream. Anyway, the whole process does not last long (a
few micro- or milliseconds), but long enough to be registered by the microcontroller. Concerning
pulse counter, error occurs in almost 100% of cases!

This problem may be easily solved by connecting a simple RC circuit to surpress quick voltage
changes. Since the bounce period is not defined, the values of components are not precisely
determined. In most cases, it is recommended to use the values as shown in figure below.

If complete stability is needed then radical measures should be taken! The output of the circuit,
shown in figure below (RS flip-flop), will change its logic state only after detecting the first pulse
triggered by contact bounce. This solution is more expensive (SPDT switch), but the problem is
definitely solved!

 203

In addition to these hardware solutions, there is also a simple software solution. When a program
tests the state of some input pin and detects a change, the check should be done one more time after
a certain delay. If the program confirms the change, it means that a switch/push-button has
changed its position. The advantages of such solution are obvious: it is free of charge, effects of
noises are eliminated and it can be applied to the worstquality contacts as well.

RELAY

A relay is an electrical switch that opens and closes under the control of another electrical circuit. It
is therefore connected to output pins of the microcontroller and used to turn on/off high-power
devices such as motors, transformers, heaters, bulbs, etc. These devices are almost always placed
out of the board with sensitive components. There are various types of relays, but all of them
operate in the same way. When a current flows through the coil, the relay is operated by an
electromagnet to open or close one or many sets of contacts. Similar to optocouplers, there is no
galvanic connection (electrical contact) between input and output circuits. Relays usually demand
both higher voltage and current to start operation but there are also miniature ones that can be
activated by a low current directly obtained from a microcontroller pin.

 204

Figure on the right shows the most commonly used solution.

In order to prevent appearance of high voltage of self-induction caused by a sudden stop of current
flow through the coil, an inverted polarized diode is connected in parallel to the coil. The purpose
of this diode is to “cut off” the voltage peak.

LED DIODES

You probably know all needed and possible to know about LED diodes, but we should also think
of the younger generations...How to destroy a LED?! Well...Very simple.

 205

Quick burning
Like any other diode, LED has two ends- anode and cathode. Place it properly and bring power
supply voltage. The diode will happily emit light. Turn it upside down and bring power supply
voltage (even for a moment). It will not emit light- NEVER AGAIN!

Slow burning

There is a nominal, i.e. maximum current determined for every LED which should not be
exceeded. If it happens, the diode will emit more intensive light, but not for a long time!

Something to remember

Similar to the previous example, all you need to do is to discard a current limiting resistor.
Depending on power supply voltage, the effect might be spectacular!

LED DISPLAY

Basically, LED display is nothing else but several LEDs molded in the same plastic case. Diodes
are arranged in a way that different markscommonly digits- 0, 1, 2,...9- are displayed by activating
them. There are many types of displays composed of several dozens of built in diodes which can
display different symbols. The most commonly used is so called 7-segment display. It is composed
of 8 LEDs- 7 segments are arranged as a rectangle for symbol displaying and there is an additional
segment for decimal point displaying. In order to simplify connection, anodes or cathodes of all
diodes are connected to the common pin so that there are common anode displays and common
cathode displays, respectively. Segments are marked with the letters from a to g, plus dp, as shown
in figure below. On connecting, each diode is treated separately, which means that each must have
its own current limiting resistor.

Here are a few important things that one should pay attention to when buying LED displays:

 206

• Depending on whether anodes or cathodes are connected to the common pin, there are common
anode displays and common cathode displays. Figure above shows a common anode display.
Looking at physical features, there is no difference between these displays at all so it is
recommended to check carefully prior installation which of them is in use.

• For each microcontroller pin, there is a maximum current limitation it can receive or give.
Because of that, if several displays are connected to the microcontroller it is rec ommended to
use so called Low current LEDs using only 2mA for operation.

• Display segments are usually marked with the letters from a to g, but there is no fast rule
indicating to which micro controller pins they should be connected. For that reason it is very
important to check connecting prior to start program writing or designing a device.

Displays connected to the microcontroller usually occupy a large number of valuable I/O pins,
which can be a big problem especially when it is needed to display multi-digital numbers. The
problem is more than obvious if for example it is needed to display two 6-digit numbers (a simple
calculation shows that 96 output pins are needed in that case)! This problem has a solution called

MULTIPLEXING.

Here is how an optical illusion based on the same operating principle as a film camera is made.
Only one digit at a time is active, but they change their state so quickly that one gets impression
that all digits of a number are active simultaneously.

Here is an explanation on the figure above. First a byte representing units is applied on a
microcontroller port and a transistor T1 is activated simultaneously. After a while, the transistor T1
is turned off, a byte representing tens is applied on a port and transistor T2 is activated. This
process is being cyclically repeated at high speed for all digits and corresponding transistors.

 207

A disappointing fact which indicates that the microcontroller is just a kind of miniature computer
designed to understand only the language of zeros and ones is fully expressed when displaying any
digit. Namely, the microcontroller does not know what units, tens or hundreds are, nor what ten
digits we are used to look like. Therefore, each number to be displayed must go through the
following procedure:

First of all, in a particular subroutine a multi-digital number must be split into units, tens etc. Then,
these must be stored in special bytes each. Digits get recognizable format by performing
“masking”. In other words, a binary format of each digit is replaced by different combination of
bits using a simple subroutine. For example, the digit 8 (0000 1000) is replaced by binary number
0111 1111 in order to activate all LEDs displaying digit 8. The only diode remaining inactive in
this case is reserved for decimal point.

If a microcontroller port is connected to display in a way that bit 0 activates segment “a”, bit 1
activates segment “b”, bit 2 segment “c” etc., then the table below shows the mask for each digit.

Digits to display Display Segments
 dp a b c d e f g
0 0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0 0
2 0 1 1 0 1 1 0 1
3 0 1 1 1 1 0 0 1
4 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1
6 0 1 0 1 1 1 1 1
7 0 1 1 1 0 0 0 0
8 0 1 1 1 1 1 1 1
9 0 1 1 1 1 0 1 1

In addition to digits from 0 to 9, there are some letters- A, C, E, J, F, U, H, L, b, c, d, o, r, t- that
can be also displayed by means of the appropriate masking.

 208

In case the common anode displays are used, all ones contained in the previous table should be
replaced by zeros and vice versa. Besides, NPN transistors should be used as drivers in that case.

OPTOCOUPLER

An optocoupler is a device commonly used to galvanically separate microcontroller electronics
from any potentially dangerous current or voltage in its surroundings. Optocouplers usually have
one, two or four light sources (LED diodes) on their input while on their output, opposite to diodes,
there is the same number of elements sensitive to light (phototransistors, photo-thyristors or photo-
triacs). The point is that optocoupler uses a short optical transmission path to transfer a signal
between elements of circuit, while keeping them electrically isolated. This isolation makes sense
only if diodes and photo-sensitive elements are separately powered. In this way, the
microcontroller and expensive additional electronics are completely protected from high voltage
and noises which are the most common cause of destroying, damaging or unstable operation of
electronic devices in practice. Most frequently used optocouplers are those with phototransistors on
their outputs. Concerning the optocouplers with internal base-to-pin 6 connection (there are also
optocouplers without it), the base may be left unconnected.

A broken line in figure above denotes optional connection which lessens the effects of noises by
eliminating very short pulses.

LCD DISPLAY

This component is specialized to be used with the microcontrollers, which means that it cannot be
activated by standard IC circuits. It is used for displaying different messages on a miniature liquid
crystal display. A model described here is for its low price and great capabilities most frequently
used in practice. It is based on the HD44780 microcontroller (Hitachi) and can display messages in
two lines with 16 characters each. It displays all letters of alphabet, greek letters, punctuation
marks, mathematical symbols etc. In addition, it is possible to display symbols made up by the

 209

user. Other useful features include automatic message shift (left and right), cursor appearance,
LED backlight etc.

LCD DISPLAY

Along one side of a small printed board there are pins used for connecting to the microcontroller.
There are in total of 14 pins marked with numbers (16 in case the backlight is built in). Their
function is described in table bellow:

Function Pin Number Name Logic State Description
Ground 1 Vss - 0V

Power supply 2 Vdd - +5V

Contrast 3 Vee - 0 - Vdd

4 RS
0
1

D0 – D7 are interpreted as commands
D0 – D7 are interpreted as data

5 R/W
0
1

Write data (from controller to LCD)
Read data (from LCD to controller) Control of operating

6 E
0
1

From 1 to 0

Access to LCD disabled
Normal operating

Data/commands are transferred to LCD
7 D0 0/1 Bit 0 LSB

8 D1 0/1 Bit 1

9 D2 0/1 Bit 2

10 D3 0/1 Bit 3

11 D4 0/1 Bit 4

12 D5 0/1 Bit 5
13 D6 0/1 Bit 6

Data / commands

14 D7 0/1 Bit 7 MSB

LCD screen

LCD screen consists of two lines with 16 characters each. Every character consists of 5x8 or 5x11
dot matrix. This book covers 5x8 character display, which is indeed the most commonly used one.

 210

Display contrast depends on power supply voltage and whether messages are displayed in one or
two lines. For that reason, varying voltage 0-Vdd is applied on the pin marked as Vee. Trimmer
potentiometer is usually used for that purpose. Some LCD displays have built in backlight (blue or
green diodes). When used during operation, a current limiting resistor should be serially connected
to one of the pins for backlight (similar to LED diodes).

If there are no characters displayed or if all of them are dimmed upon the display is switched on,
the first thing that should be done is to check the potentiometer for contrast adjustment. Is it
properly adjusted? The same applies if the mode of operation has been changed (writing in one or
two lines).

LCD Memory

LCD display contains three memory blocks:

• DDRAM - Display Data RAM
• CGRAM - Character Generator RAM
• CGROM - Character Generator ROM

 211

DDRAM Memory

DDRAM memory is used for storing characters that should be displayed. The size of this memory
is sufficient for storing 80 characters. Some memory locations are directly connected to the
characters on display.

All works quite simply: it is enough to configure display to increment addresses automatically
(shift right) and set starting address for the message that should be displayed (for example 00 hex).

After that, all characters sent through lines D0-D7 will be displayed as a message we are used to-
from left to right. In this very case, displaying starts from the first field of the first line because the
address is 00 hex. If more than 16 characters are sent then all of them will be memorized, but only
first sixteen characters will be visible. In order to display the rest of them, a shift command should
be used. Virtually, everything looks as if LCD display is a window which shifts left-right over
memory locations containing different characters. In reality, that is how the effect of message
shifting on the screen has been made.

If cursor is on, it appears at location which is currently addressed. In other words, when a character
appears at cursor position, it will automatically move to the next addressed location.

This is a sort of RAM memory so data can be written to and read from it, but its contents is
irretrievably lost upon the power goes off.

CGROM Memory

CGROM memory contains default character map with all characters that can be displayed on the
screen. Each character is assigned to one memory location:

 212

Addresses of CGROM memory locations match the characters of ASCII. If the program being
currently executed encounters a command “send character P to port” then binary value 0101 0000
appears on the port. This value is ASCII equivalent to the character P. It is further written to LCD,
which results in displaying the symbol from the 0101 0000 location of CGROM. In other words,
the character “P” is displayed. This applies to all letters of the alphabet (capital and small), but not
to the numbers!

As seen on the previous map, addresses of all digits are pushed forward by 48 in relative to their
values (digit 0 address is 48, digit 1 address is 49, digit 2 address is 50 etc.). Accordingly, in order
to display digits correctly it is necessary to add a decimal number 48 to each of them prior to
sending them to LCD.

What is ASCII? Since their appearance till these days, computers can recognize only numbers but
not letters. It means that all data a computer swaps with a peripheral device has binary format even

 213

though the same is recognized by the man as letters (keyboard is an excellent example)! It’s as
simple as that- every character matches the unique combination of zeroes and ones. ASCII is a
character encoding based on the English alphabet. ASCII code specifies a correspondence between
standard character symbols and their numerical equivalents.

LCD Basic Commands

All data transferred to LCD through the outputs D0-D7 will be interpreted as a command or a data,
which depends on the pin RS logic state:

RS = 1 - Bits D0 - D7 are addresses of the characters to be displayed. LCD processor addresses
one character from the character map and displays it. The DDRAM address specifies the location
on which the character is to be displayed. This address is defined prior character transfer or the
address of the previously trans ferred character is automatically incremented.

RS = 0 - Bits D0 - D7 are commands which determine display mode.

The commands recognized by LCD are listed in table below:

Command RS RW D7 D6 D5 D4 D3 D2 D1 D0 Execution Time
Clear display 0 0 0 0 0 0 0 0 0 1 1.64mS

Cursor home 0 0 0 0 0 0 0 0 1 x 1.64mS

Entry mode set 0 0 0 0 0 0 0 1 I/D S 40uS

Display on/off control 0 0 0 0 0 0 1 D U B 40uS
Cursor/Display Shift 0 0 0 0 0 1 D/C R/L x x 40uS

Function set 0 0 0 0 1 DL N F x x 40uS

Set CGRAM address 0 0 0 1 CGRAM address 40uS

Set DDRAM address 0 0 1 DDRAM address 40uS

Read “BUSY” flag (BF) 0 1 BF DDRAM address -
Write to CGRAM or DDRAM 1 0 D7 D6 D5 D4 D3 D2 D1 D0 40uS

Read from CGRAM or DDRAM 1 1 D7 D6 D5 D4 D3 D2 D1 D0 40uS

I/D 1 = Increment (by 1) R/L 1 = Shift right
 0 = Decrement (by 1) 0 = Shift left

S 1 = Display shift on DL 1 = 8-bit interface
 0 = Display shift off 0 = 4-bit interface

D 1 = Display on N 1 = Display in two lines
 0 = Display off 0 = Display in one line

U 1 = Cursor on F 1 = Character format 5x10 dots
 0 = Cursor off 0 = Character format 5x7 dots

B 1 = Cursor blink on D/C 1 = Display shift
 0 = Cursor blink off 0 = Cursor shift

 214

What is Busy flag ?

Comparing to the microcontroller, LCD is an extremely slow component. Because of that, it was
necessary to provide a signal which would, upon a command execution, indicate that display is
ready for new receive. That signal, called busy flag, can be read from the line D7. When the
voltage on this line is 0V (BF=0), display is ready to receive new data.

LCD Connecting

Depending on how many lines are used for connecting LCD to the microcontroller, there are 8-bit
and 4-bit LCD modes. The appropriate mode is selected at the beginning of the operation in tha
process called initialization. 8-bit LCD mode uses outputs D0-D7 to transfer data as explained on
the previous page.

The main purpose of 4-bit LED mode is to save valuable I/O pins of the microcontroller. Only 4
higher bits (D4-D7) are used for communication, while others may be unconnected. Each data is
sent to LCD in two steps- four higher bits are sent first (normally through the lines D4-D7) and
four lower bits are sent afterwards. Initialization enables LCD to link and interprete received bits
correctly.

 215

Besides, data is rarely read from LCD (it is mainly transferred from the microcontroller to LCD) so
it is often possible to save an extra I/O pin by simple connecting R/W pin to the Ground. Such
saving has its price. Messages will be normally displayed, but it will not be possible to read busy
flag since it is not possible to read display as well. Fortunately, there is a simple solution. After
sending a character or a command it is important to give LCD enough time to do its job. Owing to
the fact that execution of the slowest command lasts for approximately 1.64mS, it will be fairly
enough to wait approximately 2mS for LCD.

LCD Initialization

LCD is automatically cleared upon being supplied with electrical power. It lasts for approximately
15mS. After that, display is ready to operate. The mode of operation is set by default. It means that:

1. Display is cleared.
2. Mode

DL = 1 Communication through 8-bit interface
N = 0 Messages are displayed in one line
F = 0 Character font 5 x 8 dots

3. Display/Cursor on/off
D = 0 Display off
U = 0 Cursor off
B = 0 Cursor blink off

4. Character entry
ID = 1 Displayed addresses are automatically incremented by 1
S = 0 Display shift off

Automatic reset is mostly done without any problems. Mostly, but not always! If for any reason
power supply voltage does not reach full value within 10mS, display will start performing
completely unpredictably. If voltage supply unit is not able to meet that condition or if it is needed
to provide completely safe operation, the process of initialization is applied. Initialization, among
other things, causes a new reset enabling display to operate normally.

Automatic reset is mostly done without any problems. Mostly, but not always! If for any reason
power supply voltage does not reach full value within 10mS, display will start performing
completely unpredictably. If voltage supply unit is not able to meet that condition or if it is needed
to provide completely safe operation, the process of initialization is applied. Initialization, among
other things, causes a new reset enabling display to operate normally.

 216

Refer to figure below for the procedure on 8-bit initialization:

It is not a mistake! In this algorithm, the same value is transferred three times in a row.

 217

In case of 4-bit initialization, the procedure is as follows:

 218

EXAMPLE 1

Writing header and configuring I/O pins

The only purpose of this program is to turn on a few LED diodes on port B. It is nothing special,
isn’t it? Anyway, use this example to study what a real program looks like. Figure below shows a
connection scheme, while the program is on the next page.

Upon switching on, every other LED diode on the port B emits light. That is enough to indicate
that the microcontroller is properly connected and operates normally.

This example gives description of correctly written header and a few initial directives. They
represent a part of the program used in all programs described in this book. To skip repetitiveness,
it will not be written in the following examples, but is considered to be at the beginning of every
program (marked as a “Header”).

 219

The purpose of the header and initial directives is briefly described below.

Header:

Header is placed at the beginning of the program and gives basic information in the form of
comments (name of the program , release date etc.). Don’t be deluded into thinking that after a few
months you will know what that program is about and why it is saved in your computer.

Initial directives:

list p=16f887

This directive defines processor to execute a program.

#include <p16f887.inc>

 220

It enables compiler to access the document p16f887.inc (If you have MPLAB installed, it is placed
by default on C:\Program files\Microchip\MPASM Suite). Every SFR register contained in this
document, as well as every bit, has its own name and address. If program reads for example:

bsf INTCON, GIE

it means that the GIE bit of the INTCON register should be set. Instruction as such makes no sense
for the compiler. It has to access the “.inc” document in order to know that the seventh bit of the
SFR at the address 000B hex should be set.

errorlevel -302

This is a “cosmetic” directive which disables the irritating message “Register in operand not in ...”
to appear at the end of every compiling process. It is not necessary, but useful.

__config

This directive is used to include config word in the program upon compiling. It is not necessary
because the same operation is performed by software for loading program into chip. However, do
you have any idea which software will be used by the end user? What options will be set by
default? You are the end user?! Do you know which program you will prefer for MCU
programming to use next year? Make one day to come sunny, take this directive as a necessary one
and include it in your program.

 221

EXAMPLE 2

Using program loop and internal oscillator LFINTOSC

This is a continuation of the previous example, but deals with a bit more complicated problem...
The idea is to make LED diodes on the port B blink. A simple thing at first glance! It is enough to
periodically change logic state on the port B. In this case, numbers 01010101 and 10101010 are
selected to change in the following way:

1. Set binary combination 01010101 on port B
2. Remain in loop1
3. Replace existing bits combination on port B with 10101010
4. Remain in loop2
5. Return to the step 1 and repeat the whole procedure

Do you know how fast this should be done? It would be possible to observe changes on port B only
if, besides delays provided in loop1 and loop2, the whole process is slowed down approximately
250 times more. Because of that, the microcontroller uses internal oscillator LFINTOSC with the
frequency of 31kHz instead of external oscillator with quartz crystal (8MHz).

You have noticed that clock signal source is changed “on the fly”. If you want to make sure of it,
remove quartz crystal prior to switch the microcontroller on. What will happen? The
microcontroller will not start operating because the config word loaded with the program requires
the use of quartz on switching on. If you remove the crystal later during the operation, it will not
affect the microcontroller at all!

 222

Example 2:

;** **********************
; Header
;** **********************
;************* DEFINING VARIABLES ***************** **********************
 cblock 0x20 ; Block of variables starts at address 20h
 counter1 ; Variable "counter1" at address 20h
 endc
;** **********************
 org 0x0000 ; Address of the first program instruction

 banksel OSCCON ; Selects memory bank containing
 ; register OSCCON
 bcf OSCCON,6 ; Selects internal oscillator LFINTOSC with
 bcf OSCCON,5 ; the frequency of 31KHz
 bcf OSCCON,4
 bsf OSCCON,0 ; Microcontroller uses internal oscillator

 banksel TRISB ; Selects bank containing register TRISB
 clrf TRISB ; All port B pins are configured as outputs
 banksel PORTB ; Selects bank containing register PORTB

loop
 movlw B'01010101' ; Binary number 01010101 is written to W
 movwf PORTB ; Number is moved to PORTB
 movlw h'FF' ; Number hFF is moved to W
 movwf counter1 ; Number is moved to variable "counter1"

loop1
 decfsz counter1 ; Variable "counter1" is decremented by 1
 goto loop1 ; If result is 0, continue. If not,
 ; remain in loop1

 movlw B'10101010' ; Binary number 10101010 is moved to W
 movwf PORTB ; Number is moved to PORTB
 movlw h'FF' ; Number hFF is moved to W
 movwf counter1 ; Number is moved to variable "counter1"

loop2
 decfsz counter1 ; Variable "counter1" is decremented by 1
 goto loop2 ; If result is 0, continue. If not,
 ; remain in loop2

 goto loop ; Go to label loop
 end ; End of program

 223

EXAMPLE 3

Using nested loop

Connection scheme is again the same. To make this a bit more interesting, a different combination
of port B bits change each other. And, that’s not all of course. As seen from the previous two
examples, the microcontroller is very fast and very often it needs to be slowed down. The use of
built-in oscillator LF, as in example 2, is the last measure that should be applied. The problem is
more often solved by using nested loops in a program. In this example, the variable “counter1” is
decremented 255 times by 1 in the shorter loop1. Prior to leave this loop, the program will count
255 times from 255 to 0. It means that between only two LED diode’s blink on the port, there are
255x255 pulses coming from quartz oscillator. Precisely speaking, that number of pulses amounts
to approximately 196 000 since it also takes some time to execute jump instructions and decrement
instructions. Yes, it’s true, the microcontroller mostly waits and does nothing...

Example 3:

;******************* Header *********************** ************************
;************* DEFINING VARIABLES ***************** ************************

 cblock 0x20 ; Block of variables starts at address 20h
 counter1 ; Variable "counter1" at address 20h
 counter2 ; Variable "counter2" at address 21h
 endc
;** ************************
 org 0x0000 ; Address of the first program instruction

 banksel TRISB ; Selects bank containing register TRISB
 clrf TRISB ; Clears TRISB

 banksel PORTB ; Selects bank containing register PORTB
loop
 movlw B'11110000' ; Binary number 11110000 is moved to W
 movwf PORTB ; Number is moved to PORTB
 movlw h'FF' ; Number hFF is moved to W
 movwf counter2 ; Number is moved to variable "counter2"

loop2
 movlw h'FF' ; Number hFF is moved to W
 movwf counter1 ; Number is moved to "counter1"
loop1
 decfsz counter1 ; Decrements "counter1" by 1. If result is 0
 goto loop1 ; skip next instruction

 decfsz counter2 ; Decrements "counter2" by 1. If result is 0
 goto loop2 ; skip next instruction

 movlw B'00001111' ; Binary number 00001111 is moved to W
 movwf PORTB ; Number is moved to PORTB
 movlw h'FF' ; Number hFF is moved to W
 movwf counter2 ; Number is moved to variable "counter2"

 224

loop4
 movlw h'FF' ; Number hFF is moved to W
 movwf counter1 ; Number is moved to variable "counter1"
loop3
 decfsz counter1 ; Decrements "counter1" by 1. If result is 0
 ; skip next instruction
 goto loop3
 decfsz counter2 ; Decrements "counter2" by 1. If result is 0
 goto loop4 ; skip next instruction
 goto loop ; Jump to label loop
 end ; End of program

 225

EXAMPLE 4

Using timer TMR0 and Interrupts

If you have carefully read the previous example, you could notice a disadvantage of providing
delays using loops. In all those cases, the microcontroller is “captive” and does nothing. It simply
waits for some time to pass. Such wasting of time is an unacceptable luxury and some other
method should be applied therefore.

Do you remember the story about the timers? About interrupts? This example makes links between
them in a practical way. The scheme is still the same as well as the challenge. It is necessary to
provide delay long enough to notice changes on a port. This time, the timer TMR0 with assigned
prescaler is used for that purpose. Interrupt occurs on every timer register overflow and interrupt
routine increments the number in port B by 1. The whole procedure is performed “behind the
scenes” of the whole process, which enables the microcontroller to do other things.

Pay attention to a few details:

• Even though it is unnecessary in this case, the contents of the most important registers (W,

STATUS and PCLATH) must be saved at the beginning of interrupt routine.
• Interrupt causes the appropriate flag bit to be automatically set and the GIE bit to be

automatically cleared. At the end of interrupt routine, do not forget to return these bits the state
they had prior interrupt occurred.

 226

• At the end of interrupt rutine, important registers should be given the original content.

Example 4:

;********************** Header ******************** **************************
;**************** DEFINING VARIABLES ************** **************************

 cblock 0x20 ; Block of variables starts at address 20h
 w_temp ; Variable at address 20h
 pclath_temp ; Variable at address 21h
 status_temp ; Variable at address 22h
 endc

;************************ START OF PROGRAM ******** **************************
 org 0x0000 ; Address of the first program instruction
 goto main ; Go to label "main"

;************************ INTERRUPT ROUTINE ******* **************************
 org 0x0004 ; Interrupt vector
 movwf w_temp ; Saves value in register W
 movf STATUS ; Saves value in register STATUS
 movwf status_temp
 movf PCLATH ; Saves value in register PCLATH
 movwf pclath_temp

 banksel PORTB ; Selects bank containing PORTB
 incf PORTB ; Increments register PORTB by 1

 banksel INTCON ; Selects bank containing INTCON
 bcf INTCON,TMR0IF ; Clears interrupt flag TMR0IF

 movf pclath_temp,w ; PCLATH is given its original content
 movwf PCLATH
 movf status_temp,w ; STATUS is given its original content
 movwf STATUS
 swapf w_temp,f ; W is given its original content
 swapf w_temp,w

 bsf INTCON,GIE ; Global interrupt enabled
 retfie ; Return from interrupt routine

;************************ MAIN PROGRAM ************ **************************
main ; Start of the main program

 banksel ANSEL ; Bank containing register ANSEL
 clrf ANSEL ; Clears registers ANSEL and ANSELH
 clrf ANSELH ; All pins are digital

 banksel TRISB ; Selects bank containing register TRISB
 clrf TRISB ; All port B pins are configured as outputs

 227

 banksel OPTION_REG ; Bank containing register OPTION_REG
 bcf OPTION_REG,T0CS ; TMR0 counts pulses from oscillator
 bcf OPTION_REG,PSA ; Prescaler is assign to timer TMR0

 bsf OPTION_REG,PS0 ; Prescaler rate is 1:256
 bsf OPTION_REG,PS1
 bsf OPTION_REG,PS2

 banksel INTCON ; Bank containing register INTCON
 bsf INTCON,TMR0IE ; TMR0 interrupt overflow enabled
 bsf INTCON,GIE ; Global interrupt enabled

 banksel PORTB ; Bank containing register PORTB
 clrf PORTB ; Clears port B
loop
 goto loop ; Remain here
 end ; End of program

 228

EXAMPLE 5

Using subroutine, using push-buttons

In the previous examples the microcontroller executes program without being influenced in any
way from its surrounding. In practice, devices operating in this way are very rare (for example,
simple neon signs). You guess, among other components, input pins will be also used in this
example. There is a scheme in figure below, while the program is on the next page. Everything is
still very simple.

At the beginning of the program, immediately upon defining variables, the microcontroller pins*
are configured by using registers TRISA and TRISB.

In the main program, one bit on port B is set first. Then the contents of this register is constantly
moved by one place to the left (instruction rlf PORTB). It makes impression that LED diodes
emitting light move. To make it visible, the whole process must be slow enough. Press on the push-
button “STOP” stops seeming moving and the program remains in loop3. Delay is provided by
means of nested loop. This time, it is placed in a short subroutine “DELAY”.

* It is not necessary for PORTA pins since they are automatically configured as inputs after every
reset.

 229

Example 5:

;** **************************
; Header
;** **************************
;************* DEFINING VARIABLES ***************** **************************

 cblock 0x20 ; Block of variables starts at address 20h
 counter1 ; Variable "counter1" at address 20h
 counter2 ; Variable "counter2" at address 21h
 endc ; Block of variables ends

;************************ MAIN PROGRAM ************ **************************

 org 0x0000 ; Address of the first program instruction
 banksel ANSEL ; Selects bank containing register ANSEL
 clrf ANSEL ; Clears registers ANSEL and ANSELH to
 clrf ANSELH ; configure all inputs as digital

 banksel TRISB ; Selects bank containing register TRISB
 clrf TRISB ; All port B pins are configured as outputs
 movlw B'00000010'
 movwf TRISA ; Pin RA1 is input

 banksel PORTB ; Selects bank containing register TRISB
 movlw B'00000001' ; Writes 1 to register W
 movwf PORTB ; Number is moved to PORTB
loop
 rlf PORTB ; Port B bits rotates by one place left
 call DELAY ; Calls subroutine "DELAY"
loop3
 btfss PORTA,1 ; Tests the firs port A bit
 goto loop3 ; "0" is applied to pin.Go to label "loop3"
 goto loop ; "1" is applied to pin.Go to label "loop"

;************************ SUBROUTINES ************* **************************
DELAY
 clrf counter2 ; Clears variable "counter2"
loop1
 clrf counter1 ; Clears variable "counter1"
loop2
 decfsz counter1 ; Decrements variable "counter1" by 1
 goto loop2 ; Result is not 0. Go to label loop2
 decfsz counter2 ; Decrements variable "counter2" by 1
 goto loop1 ; Result is not 0. Go to lab loop1
 return ; Return from subroutine "DELAY"

 end ; End of program

 230

EXAMPLE 6

TMR0 as a counter, defining new variables, using relay
This time, TMR0 is used as a counter. The idea is to connect counter input to one pushbutton so
that it counts one pulse at a time upon every button press. When the number of counted pulses
becomes equal to the number in register TEST, logic one voltage (5V) will be applied to the
PORTD, 3 pin. Since this voltage activates electro-mechanical relay, this bit is called the same-
“Relay”.

In this example, the TEST register contains number 5. Naturally, it could be any number and could
be calculated or entered via keyboard. Besides, instead of relay, the microcontroller can activate
some other device and instead of push-buttons it can use sensors. This example illustrates one of
the most common usage of the microcontroller in industry. When something is done as many times
as needed, then something else should be switched on or off...

Example 6:

;** **************************
; Header

 231

;** **************************
;************* DEFINING VARIABLES ***************** **************************

 TEST equ B'00000101' ; Binary number 00000101 = TEST
 #define RELAY PORTD,3 ; Pin PORTD,3 = RELAY

;************************ MAIN PROGRAM ************ **************************

 org 0x0000 ; Address of the first program instruction

 banksel TRISB ; Selects bank containing register TRISB
 clrf TRISB ; All port B pins are configured as outputs
 clrf TRISD ; All port D pins are configured as outputs
 movlw B'00010000' ; This number is written to W register
 movwf TRISA ; Only the forth pin of port A is input

 banksel OPTION_REG ; Bank containing OPTION_REG register
 bsf OPTION_REG,T0CS ; Pin RA4 is supplied with pulses
 bsf OPTION_REG,PSA ; Prescaler rate is 1:1

 banksel PORTB ; Selects bank containing PORTB register

 clrf TMR0 ; Clears timer register
 bcf PORTD,3 ; Pin PORTD,3 = 0
loop
 movfw TMR0 ; Timer register is moved to W register
 movwf PORTB ; W register is moved to PORTB
 xorlw TEST ; Operation exclusive OR between
 ; W register and number TEST (00000101)
 btfsc STATUS,Z ; If numbers are equal, result is 0 and
 bsf PORTD,3 ; bit STATUS,Z = 1. Bit PORTD,3 is set
 goto loop ; and jump to label loop is executed

 end ; End of program

 232

EXAMPLE 7

Using macros in the program, using debounce routine

You have probably noticed in the previous example that the microcontroller does not operate
always as expected. Namely, by pressing push-button, number on port B is not always incremented
by 1. Since it is about mechanical push-buttons, they usually make several short successive
contacts upon have been activated. You guess, the microcontroller registers and counts all that...

There are several ways to solve this problem. This program uses program delay known as
debounce. Basically, it is a simple procedure. Upon input change detection (button press), a short
program delay is provided and program waits for another change (button release). Only after that,
the program comes to a conclusion that the button is activated.

In this very case, push-button is tested by means of macro button. Besides, this macro contains
program delay which is provided by means of another macro pausems.

Main program is relatively simple and enables the variable “cnt” to be incremented and
decremented by using two push-buttons. This variable is thereafter copied to port B and affects
LED diodes (logic one (1) turns LED diode on, while logic zero (0) turns LED diode off).

 233

Example 7:

;********************** Header ******************** **
;************* DEFINING VARIABLES ***************** ********

 cblock 0x20 ; Block of variables starts at address 20hex

 HIcnt
 LOcnt
 LOOPcnt
 cnt
 endc ; End of block of variables
;** ********************
 ORG 0x000 ; Reset vector
 nop
 goto main ; Go to program start (label "main")
;** ********************

 include "pause.inc"
 include "button.inc"

;** ********************
main
 banksel ANSEL ; Selects bank containing ANSEL
 clrf ANSEL ; All pins are digital
 clrf ANSELH

 banksel TRISB
 bsf TRISA, 0
 bsf TRISA, 1
 clrf TRISB

 banksel PORTB
 clrf cnt
Loop
 button PORT,0,0,Increment
 button PORT,1,0,Decrement
 goto Loop

Increment
 incf cnt, f
 movf cnt, w
 movwf PORTB
 goto Loop
Decrement
 decf cnt, f
 movf cnt, w
 movwf PORTB
 goto Loop
 end ; End of program

 234

Macro “pausems”

;** ********************
pausems MACRO arg1
 local Loop1
 local dechi
 local Delay1ms
 local Loop2
 local End

 movlw High(arg1) ; Higher byte of argument is moved
 ; to HIcnt
 movwf HIcnt
 movlw Low(arg1) ; Lower byte of argument is moved
 ; to LOcnt
 movwf LOcnt
Loop1
 movf LOcnt, f ; Decrements HIcnt and LOcnt while
 btfsc STATUS, Z ; needed and calls subroutine Delay1ms

 goto dechi
 call Delay1ms
 decf LOcnt, f
 goto Loop1
dechi
 movf HIcnt, f
 btfsc STATUS, Z
 goto End
 call Delay1ms
 decf HIcnt, f
 decf LOcnt, f
 goto Loop1
Delay1ms: ; Delay1ms provides delay of
 movlw .100 ; 100*10us=1ms
 movwf LOOPcnt ; LOOPcnt<-100
Loop2:
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 decfsz LOOPcnt, f
 goto Loop2 ; Execution time of Loop2
 return ; is 10 us
End
 ENDM
;** ********************

Macro “button”

 235

;** **
button MACRO port,pin,hilo,label
 local Pressed1 ; All labels are local
 local Pressed2
 local Exit1
 local Exit2

 IFNDEF debouncedelay ; Enables debounce time to be defined
 ; in main program
 #define debouncedelay .10
 ENDIF

 IF (hilo == 0) ; If pull-up used
 btfsc port, pin ; If “1”, push-button is pressed
 goto Exit1
 pausems debouncedelay ; Wait for 10ms debounce
Pressed1
 btfss port, pin
 goto Pressed1
 pausems debouncedelay ; Wait until released and
 goto label ; jump to specified address
Exit1
 ELSE ; If pull-down used
 btfss port, pin
 goto Exit2 ; If “0”, push-button is released
 pausems debouncedelay ; Wait for 10ms debounce
Pressed2
 btfsc port, pin
 goto Pressed2
 pausems debouncedelay ; Wait until released and
 goto label ; jump to specified address
Exit2
 ENDIF

 ENDM
;** ********************

 236

EXAMPLE 8

Using timer TMR1 and using interrupt

16-bit timer TMR1 is used in this example. By occupying its registers TMR1L and TMR1H, an
interrupt occurs and number on port B is incremented. All that is already seen in the previous
examples. The difference is in program delay which is a bit longer this time because the prescaler
rate is 1:8.

Example 8:

;*************************** Header *************** **************************
;************* DEFINING VARIABLES ***************** **************************

 cblock 0x20 ; Block of variables starts at address 20h
 w_temp ; Variable at address 20h
 pclath_temp ; Variable at address 21h
 status_temp ; Variable at address 22h
 endc

;************************ PROGRAM START *********** *************
 org 0x0000 ; Address of the first program instruction
 goto main ; Jump to label "main"

;************************ INTERRUPT ROUTINE

 org 0x0004 ; Interrupt vector
 movwf w_temp ; Save register W

 237

 movf STATUS ; Save register STATUS
 movwf status_temp

 movf PCLATH ; Save register PCLATH
 movwf pclath_temp

 banksel PORTB ; Selects bank containing PORTB
 incf PORTB ; Register PORTB is incremented by 1

 movf pclath_temp,w ; PCLATH is given its original content
 movwf PCLATH
 movf status_temp,w ; STATUS is given its original content
 movwf STATUS
 swapf w_temp,f ; W is given its original content
 swapf w_temp,w

 banksel PIR1 ; Selects bank containing PIR1
 bcf PIR1,TMR1IF ; Clears interrupt flag TMR1IF

 bsf INTCON,GIE ; Global interrupt enabled
 retfie ; Return from interrupt routine

;************************ MAIN PROGRAM

main ; Start of main program
 banksel ANSEL ; Selects bank containing register ANSEL
 clrf ANSEL ; Clears registers ANSEL and ANSELH
 clrf ANSELH ; All pins are digital

 banksel TRISB ; Selects bank containing register TRISB
 clrf TRISB ; All port B pins are configured as outputs

 banksel T1CON ; Selects bank containing register T1CON
 bcf T1CON,TMR1CS ; TMR1 counts pulses generated by oscillator

 bsf T1CON,T1CKPS0 ; Prescaler rate is 1:8
 bsf T1CON,T1CKPS1
 bsf T1CON,TMR1ON ; Turns on timer TMR1

 banksel PIE1 ; Selects bank containing register PIE1
 bsf PIE1,TMR1IE ; TMR1 interrupt overflow enabled
 bsf INTCON,PEIE ; Peripheral modules interrupt enabled
 ; Timer TMR1 belongs to peripheral modules
 bsf INTCON,GIE ; Global interrupt enabled

 banksel PORTB ; Selects bank containing register PORTB
 clrf PORTB ; Clears port B
loop
 goto loop ; Remain here
 end ; End of program

 238

EXAMPLE 9

Using timer TMR2, configuring quartz oscillator
This example illustrates the use of timer TMR2. The microcontroller uses internal oscillator
HFINTOSC with the frequency of 500 kHz. The whole program works as follows. After the period
of time defined by register PR, prescaler and postscaler has expired, an interrupt occurs. Interrupt
routine decrements the content of the PR register and simultaneously increment the content of port
B. Since the number in register PR which determines when interrupt is to occur is constantly
decremented, interrupt will occur for shorter and shorter period of time. In other words, counting
will be carried out faster. A new cycle of accelerated counting starts after every register PR
overflow.

Example 9:

;********************** Header

;************* DEFINING VARIABLES
**

 cblock 0x20 ; Block of variables starts at address 20h
 w_temp ; Variable at address 20h
 pclath_temp ; Variable at address 21h
 status_temp ; Variable at address 22h
 endc

;************************ PROGRAM START
**
 org 0x0000 ; Address of the first program instruction
 goto main ; Jump to label "main"

;************************ INTERRUPT ROUTINE

 org 0x0004 ; Interrupt vector
 movwf w_temp ; Save register W

 movf STATUS ; Save register STATUS
 movwf status_temp

 movf PCLATH ; Save register PCLATH
 movwf pclath_temp

 banksel PORTB ; Selects bank containing PORTB
 incf PORTB ; Increments PORTB register by 1
 banksel PR2 ; Selects bank containing PR2
 decf PR2 ; PR2 is decremented by 1
 movf pclath_temp,w ; PCLATH is given its original state
 movwf PCLATH
 movf status_temp,w ; STATUS is given its original state
 movwf STATUS
 swapf w_temp,f ; W is given its original state

 239

 swapf w_temp,w

 banksel PIR1 ; Selects bank containing PIR1
 bcf PIR1,TMR2IF ; Clears interrupt flag TMR2IF

 bsf INTCON,GIE ; Global interrupt enabled
 retfie ; Return from interrupt routine

;************************ MAIN PROGRAM

main ; Start of the main program
 banksel OSCCON ; Selects bank containing register OSCCON
 bcf OSCCON,6 ; Selects internal oscillator HFINTOSC with
 bsf OSCCON,5 ; frequency of 500KHz
 bsf OSCCON,4
 bsf OSCCON,0 ; Microcontroller uses internal oscillator

 banksel ANSEL ; Selects bank containing register ANSEL
 clrf ANSEL ; Clears registers ANSEL and ANSELH
 clrf ANSELH ; All pins are digital

 banksel TRISB ; Selects bank containing register TRISB
 clrf TRISB ; All port B pins are configured as outputs
 clrf PR2

 banksel T2CON ; Selects bank containing register T2CON
 movlw H'FF' ; Sets all control register bits
 movwf T2CON ; prescaler=1:16, postscaler=1:16 TMR2=ON
 clrf PORTB

 banksel PIE1 ; Selects bank containing register PIE1
 bsf PIE1,TMR2IE ; TMR2 interrupt enabled
 bsf NTCON,PEIE ; Peripheral modules interrupt enabled
 ; Timer TMR2 belongs to peripheral modules
 bsf INTCON,GIE ; Global interrupt enabled
loop
 goto loop ; Remain here
 end ; End of program

 240

EXAMPLE 10

Module CCP1 as PWM signal generator

Since having the wide range of possibilities the CCP modules are commonly used in practice. This
example illustrates the use of CCP1 module in PWM mode. Bits of the CCP1CON register
determine that the module operates as single-output PWM. The same bits determine the PWM
frequency to be 4.88 kHz. To make things more interesting, the duration of the output P1A
(PORTC,2) pulses may be changed by means of push-buttons symbolically called “DARK” and
“BRIGHT”. Push-buttons are tested in interrupt routine initiated by the timer TMR1. Any change
affects LED diode so that it changes light intensity. Note that port B does not use external resistors
because internal pull-up resistors are enabled. The whole process of generating PWM signal is
performed “behind the scenes”, which enables the microcontroller to do other things.

 241

Example 10:

;********************** Header ******************** **************************
;************* DEFINING VARIABLES ***************** **************************
 cblock 0x20 ; Block of variables starts at address 20h
 w_temp ; Variable at address 20h
 pclath_temp ; Variable at address 21h
 status_temp ; Variable at address 22h
 endc

 #define DARK PORTB,0 ; Push-button "DARK" is connected
 ; to PORTB,0 pin
 #define BRIGHT PORTB,1 ; Push-button "BRIGHT" is connected
 ; to PORTB,1 pin
;************************ PROGRAM START *********** **************************

 org 0x0000 ; First program instruction address
 goto main ; Jump to label "main"

;************************ INTERRUPT ROUTINE ******* **************************

 org 0x0004 ; Interrupt vector

 movwf w_temp ; Save register W

 movf STATUS ; Save register STATUS
 movwf status_temp

 movf PCLATH ; Save register PCLATH
 movwf pclath_temp

 banksel CCPR1L
 btfss DARK ; Tests push-button "DARK"
 decf CCPR1L ; Push-button is pressed - decrement CCP1L by 1
 btfss BRIGHT ; Testing push-button "BRIGHT"
 incf CCPR1L ; Push-button is pressed - increment CCP1L by 1

 movf pclath_temp,w ; PCLATH is given its original content
 movwf PCLATH
 movf status_temp,w ; STATUS is given its original content
 movwf STATUS
 swapf w_temp,f ; W is given its original content
 swapf w_temp,w

 banksel PIR1 ; Selects bank containing PIR1
 bcf PIR1,TMR1IF ; Clears interrupt flag TMR1IF

 bsf TMR1H,7 ; Accelerates timer TMR0 counting
 bsf TMR1H,6 ;
 bsf INTCON,GIE ; Global interrupt enabled
 retfie ; Return from interrupt routine

 242

;************************ MAIN PROGRAM ************ **************************

main ; Start of the main program
 banksel ANSEL ; Selects bank containing register ANSEL
 clrf ANSEL ; Clears registers ANSEL and ANSELH
 clrf ANSELH ; All pins are digital

 banksel OPTION_REG ; Selects bank containing register ANSEL
 bcf OPTION_REG,7 ; Pull-up resistors enabled
 bsf WPUB,0 ; Pull-up resistors enabled
 bsf WPUB,1 ; on port B pins 0 and 1

 banksel TRISC ; Selects bank containing register TRISC
 clrf TRISC ; All port C pins are configured as outputs

 banksel T1CON ; Selects bank containing register T1CON
 bcf T1CON,TMR1CS ; TMR1 operates as a timer
 bcf T1CON,T1CKPS0 ; Prescaler rate is 1:8
 bcf T1CON,T1CKPS1
 bsf T1CON,TMR1ON ; Activates timer TMR1

 banksel PIE1 ; Selects bank containing register PIE1
 bsf PIE1,TMR1IE ; Interrupt TMR1 is enabled
 bsf INTCON,PEIE ; Peripheral modules interrupts are
 ; enabled
 bsf INTCON,GIE ; Global interrupt enabled

 movlw B'11111101' ; Prescaler TMR2 = 1:4
 banksel T2CON
 movwf T2CON
 movlw B'11111111' ; Number in register PR2
 banksel PR2
 movwf PR2

 banksel CCP1CON
 movlw B'00001100' ; Bits to configure CCP1 module
 movwf CCP1CON
loop
 goto loop ; Remain here
 end ; End of program

 243

EXAMPLE 11

Using A/D converter

PIC16F887 A/D converter is used in this example. Everything is quite simple. Variable analog
signal is applied on the AN2 pin while the result of conversion is shown on port B as a binary
number. In order to simplify the program as much as possible, only 8 lower bits of the result of
conversion are shown. GND is used as a negative voltage reference Vref-, while positive voltage
reference is applied on the AN3 pin. It enables voltage measurement scale to “stretch and shrink”.

To make this clear, A/D converter always generates a 10-bit binary result, which means that it
detects total of 1024 voltage levels (210=1024). Difference between two voltage levels is not
always the same. The less difference between Vref+ and Vref, the less difference between two of
1024 levels. Accordingly, the A/D converter is able to detect slight changes in voltage.

 244

Example 11:

;*********************** Header ******************* **************************
;************************ PROGRAM START *********** **************************

 org 0x0000 ; Address of the first program instruction

 banksel TRISB ; Selects bank containing register TRISB
 clrf TRISB ; All port B pins are configured as outputs
 movlw B'00001100'
 movwf TRISA ; Pins RA2 and RA3 are configured as inputs

 banksel ANSEL ; Selects bank containing register ANSEL
 movlw B'00001100' ; Inputs AN2 and AN3 are analog while
 movwf ANSEL ; all other pins are digital
 clrf ANSELH

 banksel ADCON1 ; Selects bank including register ADCON1
 bsf ADCON1,ADFM ; Right justification of result
 bcf ADCON1,VCFG1 ; Voltage Vss is used as Vref
 bsf ADCON1,VCFG0 ; RA3 pin voltage is used as Vref+

 banksel ADCON0 ; Selects bank containing register ADCON0
 movlw B'00001001' ; AD converter uses clock Fosc/2, AD channel
 movwf ADCON0 ; on RA2 pin is used for conversion and
 ; AD converter is enabled
loop
 banksel ADCON0
 btfsc ADCON0,1 ; Tests bit GO/DONE
 goto loop ; Conversion in progress, remain in
 ; loop
 banksel ADRESL
 movf ADRESL,w ; Lower byte of conversion result is
 ; copied to W
 banksel PORTB
 movwf PORTB ; Byte is copied to PORTB
 bsf ADCON0,1 ; Starts new conversion
 goto loop ; Jump to label "loop"
 end ; End of program

 245

EXAMPLE 12

Using EEPROM memory

This example demonstrates write to and read from built-in EEPROM memory. Program works as
follows. Main loop constantly reads EEPROM memory location at address 5 (decimal). This
number is displayed on port D. The same loop tests the state of three push-buttons connected to
port A. The push-buttons “INCREMENT” and “DECREMENT” have the same purpose like in
example 7 - increment and decrement the variable “cnt” which is thereafter displayed on port B.
The push-button “MEMO” enables that variable to be written to EEPROM memory. In order to
check it, it is enough to press this push-button and switch off device. On the next switch on, the
program displays the value of variable on port D (at the moment of writing, this value was
displayed on port B).

 246

Example 12:

;********************** Header ******************** **************************
;*********** Defining variables in program ******** **************************
 cblock 0x20 ; Block of variables starts at address 20h

 HIcnt
 LOcnt
 LOOPcnt
 cnt
 endc ; End of block

;** **************************
 ORG 0x000 ; Reset vector
 nop
 goto main ; Go to start of the program (label "main")
;** **************************
 include "pause.inc"
 include "button.inc"
;** **************************
main
 banksel ANSEL ; Selects bank containing ANSEL
 clrf ANSEL
 clrf ANSELH ; All pins are digital

 banksel TRISB
 bsf TRISA, 0 ; Input pin
 bsf TRISA, 1 ; Input pin
 bsf TRISA, 2 ; Input pin
 clrf TRISB ; All port B pins are outputs
 clrf TRISD ; All port D pins are outputs
 banksel PORTB
 clrf PORTB ; PORTB=0
 clrf PORTD ; PORTD=0
 clrf cnt ; cnt=0
Loop
 banksel PORTA
 button PORTA,0,0,Increment
 button PORTA,1,0,Decrement
 button PORTA,2,0,Save

 banksel EEADR
 movlw .5 ; Reads EEPROM memory location
 movwf EEADR ; at address 5
 banksel EECON1
 bcf EECON1,EEPGD
 bsf EECON1,RD ; Reads data from EEPROM memory
 banksel EEDATA
 movfw EEDATA ; Moves data to W
 banksel PORTD
 movwf PORTD ; Data is moved from W to PORTD

 247

 goto Loop
Increment ; Increments number on port B
 incf cnt, f
 movf cnt, w
 movwf PORTB
 goto Loop
Decrement ; Decrements number on port B
 decf cnt, f
 movf cnt, w
 movwf PORTB
 goto Loop
Save ; Copies data from port B to EEPROM
 banksel EEADR ; memory location at address 5
 movlw .5
 movwf EEADR ; Writes address
 banksel PORTB
 movfw PORTB ; Copies port B to register W
 banksel EEDAT
 movwf EEDAT ; Writes data to temporary register
 banksel EECON1
 bcf EECON1,EEPGD
 bsf EECON1,WREN ; Write enabled

 bcf INTCON,GIE ; All interrupts disabled
 btfsc INTCON,GIE
 goto $-2

 movlw 55h
 movwf EECON2
 movlw H'AA'
 movwf EECON2
 bsf EECON1,WR

 btfsc EECON1,WR ; Wait for write to complete
 goto $-1

 bsf INTCON,GIE ; Interrupt enabled
 bcf EECON1,WREN
 goto Loop ; Tests push-buttons again
 end ; End of program

 248

EXAMPLE 13

Two-digit LED counter, multiplexing

In this example, the microcontroller operates as a two-digit counter. Concretely, the variable Dval
is decremented (slow enough to be visible) and its value is displayed on twodigit LED display (99-
0). The challenge is to enable binary number to be converted in decimal one and split it in two
digits (tens and ones). Besides, since the LED display segments are connected in parallel, it is
necessary to ensure that they change fast in order to make impression of simultaneous light
emission (time-division multiplexing). Remember that in electronics, multiplexing allows several
analog signals to be processed by one analog-todigital converter (ADC). In this very case, time-
division multiplexing is performed by the timer TMR0, while binary to decimal number conversion
is performed in macro “digbyte”. Counter may be reset to its starting value (99) at any moment by
pressing the pushbutton “COUNTER RESET”.

 249

Example 13:

;************************* Header ***************** **************************
;** **************************
; DEFINING VARIABLES IN PROGRAM
 w_temp EQU 0x7D ; Variable for saving W register

 status_temp EQU 0x7E ; Variable for saving STATUS register

 pclath_temp EQU 0x7F ; Variable for saving PCLATH register

 CBLOCK 0x20 ; Block of variables starts at address 20h

 Digtemp
 Dig0 ; Variables for displaying digits - LSB
 Dig1
 Dig2
 Dig3 ; Variables for displaying digits - MSB
 Dval ; Counter value
 One ; Auxiliary variable which determines which
 ; display is to be switched on

 ENDC ; End of block of variables

 poc_vr EQU .99 ; Initial counter value is 99

 include "Digbyte.inc"

;** **************************
 ORG 0x0000 ; First instruction address
 goto main ; Jump to label "main"
;** **************************
 ORG 0x0004 ; Interrupt vector address

 movwf w_temp ; Move w register to w_temp register

 movf STATUS,w ; Move STATUS register to status_temp
 movwf status_temp ; register

 movf PCLATH,w ; Move PCLATH register to pclath_temp
 movwf pclath_temp ; register

 ; Start of interrupt routine...

 BANKSEL TMR0
 movlw .100
 movwf TMR0
 bcf INTCON, T0IF

 bcf PORTA, 0

 250

 bcf PORTA, 1
 btfsc One, 0
 goto Lsdon
 goto Msdon

Lsdon
 incf One, f
 movlw HIGH (Bcdto7seg)
 movwf PCLATH
 digbyte Dval
 movf Dig1, w
 call Bcdto7seg ; Place L1 mask on the PORTD
 movwf PORTD
 bsf PORTA, 1
 goto ISR_end

Msdon
 incf One, f
 movlw HIGH (Bcdto7seg)
 movwf PCLATH
 digbyte Dval
 movf Dig0, w
 call Bcdto7seg ; Place LO mask on the PORTD
 movwf PORTD
 bsf PORTA, 0
 goto ISR_end

 ; End of interrupt routine...

ISR_end
 movf pclath_temp,w ; PCLATH register is given its original
 movwf PCLATH ; state

 movf status_temp,w ; STATUS register is given its original
 movwf STATUS ; state

 swapf w_temp,f ; W register is given its original
 ; state
 swapf w_temp,w
 retfie ; Return from interrupt routine
main
 banksel ANSEL ; Selects bank containing ANSEL
 clrf ANSEL ; All pins are digital
 clrf ANSELH

 BANKSEL TRISA
 movlw b'11111100' ; RA0 and RA1 are configured as outputs and
 ; used for 7-segment display multiplexing
 ; RA2 is input push-button for initializa
 ; tion

 251

 movwf TRISA
 clrf TRISD

 BANKSEL OPTION_REG
 movlw b'10000110' ; TMR0 is incremented each 32us (Fclk=8MHz)
 movwf OPTION_REG

 BANKSEL PORTA
 movlw poc_vr
 movwf Dval ; Dval contains counter value
 movlw b'00000001' ; Initializes variable specifying display
 movwf One ; to switch on
 movwf PORTA
 movlw .100
 movwf TMR0 ; TMR0 interrupt appr.every 10ms
 bsf INTCON, GIE ; Global interrupt enabled
 bsf INTCON, T0IE ; Timer TMR0 interrupt enabled
 bcf INTCON, T0IF
Loop
 btfss One, 3 ; Falling edge encountered?
 goto Dec ; Yes! Go to Dec
 btfss PORTA, 2 ; Counter reset button pressed?
 goto Reset ; Yes! Go to Reset
 goto Loop
 ; Decrement Dval counter by 1
Dec
 btfss One, 3
 goto Dec
 movf Dval, f
 btfsc STATUS, Z ; Is Dval equal to 0?
 goto Loop ; If it is, go to loop and wait for T2
 decf Dval, f ; If Dval not equal to 0, decrement it by 1
 goto Loop
Reset
 btfss PORTA, 2 ; Wait for rising edge
 goto Reset
 movlw poc_vr
 movwf Dval ; Write initial value to counter
 goto Loop
;** **************************
 ORG 0x0300 ; Lookup table is at the top of third page, but
 ; can be placed at some other place, it is impor
 ; tant to have it all on one page
Bcdto7seg
 addwf PCL, f
 DT 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f
;** **************************
 END ; End of program

Macro “digbyte”:

 252

digbyte MACRO arg0
 LOCAL Exit0
 LOCAL Exit1
 LOCAL Exit2

 clrf Dig0
 clrf Dig1
 clrf Dig2
 clrf Dig3

 movf arg0, w
 movwf Digtemp
 movlw .100
Exit2
 incf Dig2, f
 subwf Digtemp, f
 btfsc STATUS, C
 goto Exit2
 decf Dig2, f
 addwf Digtemp, f
Exit1
 movlw .10
 incf Dig1, f
 subwf Digtemp, f
 btfsc STATUS, C
 goto Exit1
 decf Dig1, f
 addwf Digtemp, f
Exit0
 movf Digtemp, w
 movwf Dig0
 ENDM

Macro digbyte is used to convert number from digital to decimal format. Besides, digits of such
decimal number are stored into special registers in order to enable them to be displayed on LED
displays.

 253

EXAMPLE 14

Sound generating, using macros

The generation of sound is a task commonly assigned to the microcontroller. Basically, it all comes
to generating pulse sequence on one output pin. While doing so, the proportion of logic zero (0) to
logic one (1) duration determines the tone pitch and by changing different tones, different melodies
arise.

Obviously, it all still remains in the area which the microcontroller is specialized in. In this
example, any press on push-buttons T1 and T2 generates a sound. The appropriate instructions are
stored in macro “beep” containing two arguments.

Example 14:

;*********************** Header ******************* ********************
;******************* Defining variables in program ********************
 cblock 0x20

 254

 HIcnt ; Auxiliary variables for macro pausems
 LOcnt
 LOOPcnt
 PRESCwait
 Beep_TEMP1 ; Belongs to macro "BEEP"
 Beep_TEMP2
 Beep_TEMP3
 endc

#define BEEPport PORTD, 2 ; Speaker pin
#define BEEPtris TRISD, 2

 expand

;** ********************
 ORG 0x0000 ; RESET vector address
 goto main ; Jump to program start (label - main)
;** ********************
; remaining code goes here

 include "pause.inc"
 include "button.inc"
 include "beep.inc"
main
 banksel ANSEL ; Selects bank containing ANSEL
 clrf ANSEL ; All outputs are digital
 clrf ANSELH

 banksel TRISD
 movlw b'11111011' ; PORTA D initialization
 movwf TRISD
 banksel PORTD
 BEEPinit ; Macro “Beep”
Loop
 button PORTD,0,0,Play1 ; Push-button 1
 button PORTD,1,0,Play2 ; Push-button 2
 goto Loop

Play1 ; First tone
 BEEP 0xFF, 0x02
 BEEP 0x90, 0x05
 BEEP 0xC0, 0x03
 BEEP 0xFF, 0x03
 goto Loop

Play2 ; Second tone
 BEEP 0xBB, 0x02
 BEEP 0x87, 0x05
 BEEP 0xA2, 0x03
 BEEP 0x98, 0x03
 goto Loop

 255

;** ********************
 END ; End of program
Macro “beep”:

BEEPinit MACRO
 bcf STATUS, RP0
 bcf STATUS, RP1
 bcf BEEPport
 bsf STATUS, RP0
 bcf STATUS, RP1
 bcf BEEPtris
 movlw b'00000111' ; TMR0 prescaler rate 1:256
 movwf OPTION_REG ; OPTION <- W
 bcf STATUS, RP0
 bcf STATUS, RP1
 ENDM
BEEP MACRO freq, duration
 bcf STATUS, RP0
 bcf STATUS, RP1
 movlw freq
 movwf Beep_TEMP1
 movlw duration
 movwf Beep_TEMP2
 call BEEPsub
 ENDM
;** ********************
; Subroutines

BEEPsub
 clrf TMR0 ; Counter initialization
 bcf INTCON, T0IF
 bcf BEEPport
BEEPa
 bcf INTCON, T0IF ; Clears TMR0 Overflow Flag
BEEPb
 bsf BEEPport
 call B_Wait ; Logic one "1" duration
 bcf BEEPport
 call B_Wait ; Logic zero "0" duration
 btfss INTCON, T0IF ; Check TMR0 Overflow Flag,
 goto BEEPb ; skip next if set
 decfsz Beep_TEMP2, f ; Is Beep_TEMP2 = 0 ?
 goto BEEPa ; Go to BEEPa again
 return
B_Wait
 movf Beep_TEMP1, w
 movwf Beep_TEMP3
B_Waita
 decfsz Beep_TEMP3, f
 goto B_Waita
 return

 256

EXAMPLE 15

Using LCD display

This example illustrates the use of alphanumeric LCD display. The program itself is very simple
because macros are used (Usually the effort once made in writing software pays always back).

Two messages written in two lines change on display. The second message is intended to display
current temperature. Since in this case the measurement is not really carried out (no sensor is used),
the variable “temp” appears on display instead of measured temperature.

In true device, the current temperature or some other measured value would be displayed.

Example 15:

;*********************** Header ******************* ****************
 ; DEFINING VARIABLES IN PROGRAM

 CBLOCK 0x20 ; Block of variables starts at address 20h

 HIcnt ; Belongs to macro "pausems"
 LOcnt
 LOOPcnt

 LCDbuf ; Belongs to functions "LCDxxx"
 LCDtemp
 LCDportBuf ; LCD Port Buffer

 257

 Digtemp ; Belongs to macro "digbyte"
 Dig0
 Dig1
 Dig2
 Dig3

 temp
 ENDC ; End of block

LCDport EQU PORTB ; LCD is on PORTB (4 data lines on RB0-RB3)
RS EQU 4 ; RS line connected to RB4
EN EQU 5 ; EN line connected to RB5

;** ********************
 ORG 0x0000 ; Reset vector address
 nop
 goto main ; Go to beginning of the program (label "main")
;** ********************
 include "LCD.inc"
 include "digbyte.inc"
 include "pause.inc"
;** ********************
main
 banksel ANSEL ; Selects bank containing ANSEL
 clrf ANSEL ; All pins are digital
 clrf ANSELH

 bcf STATUS,RP0 ; Bank0 active only
 bcf STATUS,RP1
 movlw .23
 movwf temp ; Move arbitrary value to variable
 ; is to be displayed on LCD
 lcdinit ; LCD initialization
Loop
 lcdcmd 0x01 ; Instruction to clear LCD
 lcdtext 1, "mikroelektronika" ; Write text from the begin
 ; ning of the first line
 lcdtext 2, "Beograd" ; Write text from the beginning of
 ; the second line
 pausems .2000 ; 2 sec. delay
 lcdcmd 0x01 ; Instruction to clear LCD
 lcdtext 1, "Temperatura1" ; Write text from the begin
 ; ning of the first line
 lcdtext 2, "temp=" ; Write text from the beginning of
 ; the second line
 lcdbyte temp ; Write variable (dec.)
 lcdtext 0, " C" ; Write text after cursor
 pausems .2000 ; 2 sec. delay
 goto Loop
;** ********************

 258

 end ; End of program

LCD.inc

;** ********************
; Initialization must be done by using macro lcdinit before access
; ing LCD
;** ********************
lcdinit MACRO
 bcf STATUS, RP0 ; Bank0
 bcf STATUS, RP1
 clrf LCDportBuf
 movf LCDportBuf, w
 movwf LCDport
 bsf STATUS, RP0 ; Bank1
 bcf STATUS, RP1
 clrf TRISB ; LCDport with output LCD
 bcf STATUS, RP0 ; Bank0
 bcf STATUS, RP1

; Function set (4-bit mode change)
 movlw b'00100000'
 movwf LCDbuf
 swapf LCDbuf, w
 movwf LCDportBuf
 bcf LCDportBuf, RS
 movf LCDportBuf, w
 movwf LCDport
 bsf LCDportBuf, EN
 movf LCDportBuf, w
 movwf LCDport
 bcf LCDportBuf, EN
 movf LCDportBuf, w
 movwf LCDport
 call Delay1ms ; 1 ms delay

; Function set (display mode set)
 lcdcmd b'00101100'
 call Delay1ms ; 1 ms delay

; Display ON/OFF Control
 lcdcmd b'00001100'
 call Delay1ms ; 1 ms delay

; Entry Mode Set
 lcdcmd b'00000110'
 call Delay1ms ; 1 ms delay

; Display Clear
 lcdcmd b'00000001'
 pausems .40 ; 40 ms delay

 259

; Function set (4-bit mode change)
 movlw b'00100000'
 movwf LCDbuf
 swapf LCDbuf, w
 movwf LCDportBuf
 bcf LCDportBuf, RS
 movf LCDportBuf, w
 movwf LCDport
 bsf LCDportBuf, EN
 movf LCDportBuf, w
 movwf LCDport
 bcf LCDportBuf, EN
 movf LCDportBuf, w
 movwf LCDport
 call Delay1ms ; 1 ms delay

; Function set (display mode set)
 lcdcmd b'00101100'
 call Delay1ms ; 1 ms delay

; Display ON/OFF Control
 lcdcmd b'00001100'
 call Delay1ms ; 1 ms delay

; Entry Mode Set
 lcdcmd b'00000110'
 call Delay1ms ; 1 ms delay

; Display Clear
 lcdcmd b'00000001'
 pausems .40 ; 40 ms delay

 ENDM

;** ********************
; lcdcmd sends command to LCD (see the table on the previous page)
; lcdclr is the same as lcdcmd 0x01
;** ********************
lcdcmd MACRO LCDcommand ; Send command to LCD
 movlw LCDcommand
 call LCDcomd
 ENDM

LCDcomd
 movwf LCDbuf
 bcf LCDportBuf, RS
 movf LCDportBuf, w
 movwf LCDport
 goto LCDwr
LCDdata

 260

 movwf LCDbuf
 bsf LCDportBuf, RS
 movf LCDportBuf, w
 movwf LCDport
 goto LCDwr
LCDwr
 swapf LCDbuf, w
 call SendW
 movf LCDbuf, w
 call SendW
 return
SendW
 andlw 0x0F
 movwf LCDtemp

 movlw 0xF0
 andwf LCDportBuf, f
 movf LCDtemp, w
 iorwf LCDportBuf, f
 movf LCDportBuf, w
 movwf LCDport
 call Delay1ms
 bsf LCDportBuf, EN
 movf LCDportBuf, w
 movwf LCDport
 bcf LCDportBuf, EN
 movf LCDportBuf, w
 movwf LCDport
 call Delay1ms
 return

;** ********************
; lcdtext writes text containing 16 characters which represents a
; macro argument. The first argument select selects the line in which
; text writing is to start. If select is 0, text writing starts from
; cursor current position.
;** ********************
lcdtext MACRO select, text ; This macro writes text from cursor
 ; current position. Text is specified
 ; in argument consisting of 16 charac
 ; ters
 local Message
 local Start
 local Exit
 local i=0
 goto Start
 Message DT text ; Create lookup table from arguments
 DT 0
Start
 IF (select == 1)
 lcdcmd b'10000000'

 261

 ELSE
 IF (select == 2)
 lcdcmd b'11000000'
 ENDIF
 ENDIF

 WHILE (i<16) ; Repeat conditional program compiling 16 times
 call Message+i ; Read lookup table and place value in W
 addlw 0
 bz Exit ; until 0 is read
 call LCDdata ; Call routine displaying W on LCD
 i=i+1
 ENDW
Exit
 ENDM

;** ********************
; This macro writes value in size of 1 byte on LCD
; excluding leading zeros
;** ********************
lcdbyte MACRO arg0
 digbyte arg0 ; A hundred is in Dig2,
 ; A ten is in Dig1 and one in Dig0
 movf Dig2, w
 addlw 0x30
 call LCDdata
 movf Dig1, w ; If digit is 0 move cursor
 addlw 0x30
 call LCDdata
 movf Dig0, w ; If digit is 0 move cursor
 addlw 0x30
 call LCDdata
 ENDM
;** ********************
; 1ms Delay
Delay1ms:
 movlw .200
 movwf LOOPcnt
Delay10us:
 nop ;1us
 nop ;1us
 nop ;1us
 nop ;1us
 nop ;1us
 nop ;1us
 nop ;1us
 decfsz LOOPcnt, f ;1us
 goto Delay10us ;2us

 return

 262

EXAMPLE 16

RS232 serial communication

This example illustrates the use of the microcontroller EUSART module. Connection to PC is
enabled through RS232 standard. Program works in the following way. Every byte received via
serial communication is displayed using LED diodes connected to port B and is automatically
returned to the transmitter thereafter. If error occurs on receive, it will be signalled by switching
LED diode on. The easiest way to test device operation in practice is by using a standard Windows
program Hyper Terminal.

Example 16:

;*********************** Header ******************* ********************
; DEFINING VARIABLES IN PROGRAM

 w_temp EQU 0x7D ; Variable for saving W register
 status_temp EQU 0x7E ; Variable for saving STATUS register
 pclath_temp EQU 0x7F ; Variable for saving PCLATH w register

 263

 cblock 0x20 ; Block of variables starts at address 20 h
 Port_A ; Variable at address 20 h
 Port_B ; Variable at address 21 h
 RS232temp ; Variable at address 22 h
 RXchr ; Variable at address 23 h
 endc ; End of block of variables
;** ********************
 ORG 0x0000 ; Reset vector
 nop
 goto main ; Go to beginning of program (label "main")
;** ********************
 ORG 0x0004 ; Interrupt vector address

 movwf w_temp ; Save value of W register
 movf STATUS,w ; Save value of STATUS register
 movwf status_temp
 movf PCLATH,w ; Save value of PCLATH register
 movwf pclath_temp
;** ********************
; This part of the program is executed in interrupt routine
 banksel PIE1
 btfss PIE1, RCIE
 goto ISR_Not_RX232int
 banksel PIE1
 btfsc PIR1, RCIF
 call RX232_int_proc

ISR_Not_RX232int
 movf pclath_temp,w
 movwf PCLATH ; PCLATH is given its original value

 movf status_temp,w
 movwf STATUS ; STATUS is given its original value
 swapf w_temp,f
 swapf w_temp,w ; W is given its original value

 retfie ; Return from interrupt routine
;** ********************
RX232_int_proc ; Check if error has occurred
 banksel RCSTA
 movf RCSTA, w
 movwf RS232temp
 btfsc RS232temp, FERR
 goto RX232_int_proc_FERR
 btfsc RS232temp, OERR
 goto RX232_int_proc_OERR
 goto RX232_int_proc_Cont

RX232_int_proc_FERR
 bcf RCSTA, CREN ; To clear FERR bit, receiver is first
 ; switched off and on afterwards

 264

 nop ; Delay ...
 nop
 bsf RCSTA, CREN
 movf RCREG, w ; Reads receive register and clears FERR bit
 bsf Port_A, 0 ; Switches LED on (UART error indicator)
 movf Port_A, w
 movwf PORTA
 goto RS232_exit

RX232_int_proc_OERR
 bcf RCSTA, CREN ; Clears OERR bit
 nop ; Delay ...
 nop
 bsf RCSTA, CREN
 movf RCREG, w ; Reads receive register and clears FERR bit
 bsf Port_A, 1 ; Switches LED on (UART error indicator)
 movf Port_A, w
 movwf PORTA
 goto RS232_exit

RX232_int_proc_Cont
 movf RCREG, W ; Reads received data
 movwf RXchr
 movwf PORTB
 movwf TXREG ; Sends data back to PC

RS232_exit
 return ; Return from interrupt routine
;** ********************
; Main program

main
 banksel ANSEL ; Selects bank containing ANSEL
 clrf ANSEL ; All inputs are digital
 clrf ANSELH

 ;---------------------------------------
 ; Port configuration
 ;---------------------------------------
 banksel TRISA
 movlw b'11111100'
 movwf TRISA
 movlw b'00000000'
 movwf TRISB
 ;---------------------------------------
 ; Setting initial values
 ;---------------------------------------
 banksel PORTA
 movlw b'11111100'
 movwf PORTA
 movwf Port_A

 265

 movlw b'00000000'
 movwf PORTB
 movwf Port_B
 ;---------------------------------------
 ; USART - setting for 38400 bps
 ;---------------------------------------
 banksel TRISC
 bcf TRISC, 6 ; RC6/TX/CK = output
 bsf TRISC, 7 ; RC7/RX/DT = input

 banksel BAUDCTL
 bsf BAUDCTL, BRG16
 banksel SPBRG
 movlw .51 ; baud rate = 38400
 ; (Fosc/(4*(SPBRG+1))) Error +0.16%
 movwf SPBRG
 clrf SPBRGH

 banksel TXSTA
 bcf TXSTA, TX9 ; Data is 8-bit wide
 bsf TXSTA, TXEN ; Data transmission enabled
 bcf TXSTA, SYNC ; Asynchronous mode
 bsf TXSTA, BRGH ; High-speed Baud rate

 banksel RCSTA
 bsf RCSTA, SPEN ; RX/DT and TX/CK outputs configuration
 bcf RCSTA, RX9 ; Select mode for 8-bit data receive
 bsf RCSTA, CREN ; Receive data enabled
 bcf RCSTA, ADDEN ; No address detection, ninth bit may be
 ; used as parity bit
 movf RCSTA, W
 movf RCREG, W
 ;---------------------------------------
 ; Interrupts enabled
 ;---------------------------------------
 banksel PIE1
 bsf PIE1, RCIE ; USART Rx interrupt enabled

 bsf INTCON, PEIE ; All peripheral interrupts enabled
 bsf INTCON, GIE ; Global interrupt enabled

 ;---------------------------------------
 ; Remain here
 ;---------------------------------------
 goto $

 end ; End of program

 266

Appendix C: Development Systems

How to start working?

A microcontroller is a good-natured “giant from the bottle” and no extra knowledge is required to
use it.

In order to create a device controlled by the microcontroller, it is necessary to provide the simplest
PC, program for compiling and simple device to transfer that code from PC to chip itself.

Even though this process is quite logical, there are often some queries, not because it is
complicated, but for numerous variations. Let’s get to the point...

WRITING PROGRAM IN ASSEMBLY LANGUAGE

In order to write a program for the microcontroller, a specialized program in Windows
environment may be used. It may, but it does not have to...When using such a software, there are
numerous tools which facilitate operation (simulator tool comes first), which is an obvious
advantage. But there is also another way to write a program. Basically, text is the only thing that
matters. Because of that, any program for text processing can be used for that purpose. The point is
to write all instructions in such order they should be executed by the microcontroller, observe the
rules of assembly language and write instructions exactly as they are defined. In other words, you
just have to follow the program idea! That’s all!

Loop button PORTA,0,0,Increment
 button PORTA,1,0,Decrement
 goto Loop

Increment incf cnt,f
 movf cnt,w
 movwf PORTB
 goto Loop

Decrement decf cnt,f
 movf cnt,w
 movwf PORTB

To enable compiler to perform its task successfully, it is necessary that a document containing this
program has the extension, .asm in its name, for example: Program.asm

When a specialized program (MPLAB) is used, this extension will be automatically added. If any
other program for text processing (Notepad) is used then the document should be saved and
renamed. For example: Program.txt -> Program.asm.

Note for lazy ones: skip this procedure, open a new .asm document in MPLAB and simply
copy/paste the text of the program written in assembly language.

 267

COMPILING PROGRAM

Microcontroller does not understand assembly language as such. That is why it is necessary to
compile the program into machine language. It is more than simple when using a specialized
program (MPLAB) because a compiler is part of the software! Just one click on the appropriate
icon solves the problem and a new document with .hex extension pops out. It is actually the same
program, but compiled into computer language which microcontroller perfectly understands. Such
document is commonly named “hex code” and represents seemingly meaningless sequence of
numbers in hexadecimal numerical system.

:03000000020100FA1001000075813F
7590FFB29012010D80F97A1479D40
90110003278589EAF3698E8EB25B
A585FEA2569AD96E6D8FED9FAD
AF6DD00000001FF255AFED589EA
F3698E8EB25BA585FEA2569AD96
DAC59700D00000278E6D8FED9FA
DAF6DD00000001FF255AFED8FED
9FADAF6DD000F7590FFB29013278
E6D8FED9FADAF6DD00000001FF2
55AFED589EAF3698E8EB25BA585
FEA2569AD96DAC59D9FADAF6D
D00000001FF255AFED8FED9FADA
F6DD000F7590FFB29013278E6D82
78E6D8FED9FA589EAF3698E8EB2
5BA585FEA2569AD96DAF6DD000
00001FF2DAF6DD00000001FF255A
ADAF6DD00000001FF255AFED8FE
D9FA

In case some other software for program writing in assembly language is used, a special software
for compiling program must be installed and used as follows: set up the compiler, open the
document with .asm extension and compile. The result is the same- a new document with .hex
extension. The only problem you have now is that it is stored in your PC.

PROGRAMMING A MICROCONTROLLER

To enable “hex code” transmission to the microcontroller it is necessary to provide a cable for
serial communication and a special device called programmer with appropiate software. There are
several ways to do it.

A lot of programs and electronic circuits having that purpose can be found on Internet. Do as
follows: open hex code document, set a few parameters and click the icon for compiling. After a
while, a sequence of zeros and ones is to be programmed into the microcontroller through the serial
connection cable and programmer hardware. There is nothing else to be done except for placing the
programmed chip into the target device. In case it is necessary to make some changes in the
program, the previous procedure may be repeated unlimited number of times.

Is this a happy ending?

 268

This section briefly describes the use of MPLAB program and programmer software developed by
Mikroelektronika. Everything is very simple...

You have already installed MPLAB, haven’t you? Open a new project and a new document with
extension.asm.

OK. You have written a program and tested it by means of simulator. Program did not report any
error during compiling process? It seems that everything is under control...

 269

Program is written and successfully compiled. It is only left over to program the microcontroller.
For this purpose it is necessary to have programmer and software intervening between PC and
programmer hardware (PIC Flash for example). Start up this program...

Settings are simple and there is no need for additional explanations (type of the microcontroller,
frequency and clock oscillator etc.).

• Connect PC and programmer via USB cable
• Load HEX code using command: File -> Load HEX
• Click the “Write” push-button and wait...

That’s all! The microcontroller is programmed and everything is ready for the operation. If you are
not satisfied, make some changes in the program and repeat the procedure. Until when? Until you
feel satisfied...

 270

Development systems

A device which in testing program phase can simulate any device is called development system.
Apart from the programmer, the power supply unit and the microcontroller’s socket, the
development system contains also elements for input pins activation and output pins monitoring.
The simplest version has every pin connected to one push-button and one LED as well. High
quality version has LED displays, LCD displays, temperature sensors and all other elements which
the target device can be supplied with. These peripherals could be connected to MCU via miniature
jumpers. In that way, the whole program may be tested in practice during its writing because the
microcontroller does not know whether its input is activated by a push-button or a sensor built in a
real machine.

Development system EasyPIC5

