“PIC Microcontrollers”

[—

mikrokon! TEU:

If you haven’t done it so far then it’s high time b learn what the
microcontrollers are and how they operate. Numeroudlustrations
and practical examples along with detailed descripdn of the
PIC16F887 will make you enjoy your work with the PC
microcontrollers

Author. Milan Verle

Table of Contents

Introduction: World of Microcontrollers
Chapter 1: PIC16F887 Microcontrollers - Device Overview
Chapter 2: Core SFRs

Chapter 3: 1/0 Ports

Chapter 4: Timers

Chapter 5: CCP Modules

Chapter 6: Serial Communication Modules
Chapter 7: Analog Modules

Chapter 8: Other MCU's Circuits

Chapter 9: Instruction Set

Appendix A: Programming a Microcontroller
Appendix B: Examples

Appendix C: Development Systems

Introduction: World of Microcontrollers

The situation we find ourselves today in the fieldmicrocontrollers had its beginnings in the
development of technology of integrated circuitBisTdevelopment has enabled to store hundreds
of thousands of transistors into one chip. That veasprecondition for manufacture of
microprocessor and the first computers were madaddyng external peripherals such as memory,
input/output lines, timers and others to it. Furtinereasing of package density resulted in crgatin
an integrated circuit which contained both processw peripherals. That is how the first chip
containing a microcomputer later known as a micnb@dler has developed.

This is how it all got started...

In the year 1969, a team of Japanese engineersBd&COM company came to the USA with a
request that a few integrated circuits for calarnatvere to be designed according to their projects
The request was set to INTEL company and Marciaff Was in charge of the project there. Since
having been experienced in working with a compiR&P8, he came to an idea to suggest
fundamentally different solution instead of suggdstlesign. That solution presumed that the
operation of integrated circuit the operation ofegrated circuit was to be determined by the
program stored in the circuit itself. It meant tlwanfiguration would be simpler, but it would
require far more memory than the project proposgddpanese engineers. After a while, even
though the Japanese engineers were trying to finélagier solution, Marcian’s idea won and the
first microprocessor was born. A major help withning an idea into a ready-to-use product, Intel
got from Federico Faggin. Nine months after hisvatito Intel he succeeded in developing such a
product from its original concept. In 1971 Intelt@bed the right to sell this integrated circuit.
Before that Intel bought the license from BUSICOMnpany which had no idea what a treasure it
had. During that year, a microprocessor calledd®@} appeared on the market. That was the first
4-bit microprocessor with the speed of 6000 openatiper second. Not long after that, American
company CTC requested from Intel and Texas Instnisn® manufacture 8-bit microprocessor to
be applied in terminals. Even though CTC gave ugppoject at last, Intel and Texas Instruments
kept working on the microprocessor and in April 2%Me first 8-bit microprocessor called the
8008 appeared on the market. It was able to add@isls of memory, had 45 instructions and the
speed of 300 000 operations per second. That nimrepsor was the predecessor of all today’s
microprocessors. Intel kept on developing it and\pril 1974 it launched 8-bit processor called
the 8080. It was able to address 64Kb of memony,Atainstructions and initial price was $360.

In another American company called Motorola, theickly realized what was going on, so they
launched 8-bit microprocessor 6800. Chief construavas Chuck Peddle. Apart from the
processor itself, Motorola was the first compangt thlso manufactured other peripherals such as
6820 and 6850. At that time many companies recegngreater importance of microprocessors
and began their own development. Chuck PeddléMetbrola to join MOS Technology and kept
working intensively on developing microprocessors.

At the WESCON exhibition in the USA in 1975, a dalcevent in the history of the
microprocessors took place. MOS Technology annaliticat it was selling processors 6501 and
6502 at $25 each, which interested customers cpuldhase immediately. That was such
sensation that many thought it was a kind of frazahsidering that competing companies were
selling the 8080 and 6800 at $179 each. On thedag of exhibit, in response to the competitor,
both Motorola and Intel cut the prices of their rorocessors to $69.95. Motorola accused MOS
Technology and Chuck Peddle of plagiarizing thetquied 6800. Because of that, MOS
Technology gave up further manufacture of the 6501 kept manufacturing the 6502. It was 8-bit
microprocessor with 56 instructions and abilitydicectly address 64Kb of memory. Due to low

2

price, 6502 became very popular so it was instaffeal computers such as KIM-1, Apple |, Apple
Il, Atari, Commodore, Acorn, Oric, Galeb, Orao, frdltand many others. Soon appeared several
companies manufacturing the 6502 (Rockwell, Szkei@&TE, NCR, Ricoh, Commodore took
over MOS Technology). In the year of its prospelif82, this processor was being sold at a rate
of 15 million processors per year!

Other companies did not want to give up eitherdéreo Faggin left Intel and started his own
company Zilog Inc. In 1976 Zilog announced the 28Men designing this microprocessor Faggin
made the crucial decision. Having been familiarhwiite fact that for 8080 had already been
developed he realized that many would remain loya&hat processor because of great expenditure
which rewriting of all the programs would result iccordingly he decided that a new processor
had to be compatible with the 8080, i.e. it habbeéable to perform all the programs written for the
8080. Apart from that, many other features havenlaglgled so that the Z80 was the most powerful
microprocessor at that time. It was able to diyeatldress 64Kb of memory, had 176 instructions,
a large number of registers, built in option fofreshing dynamic RAM memory, single power
supply, greater operating speed etc. The Z80 wasat success and everybody replaced the 8080
by the Z80. Certainly the Z80 was commercially thest successful 8-bit microprocessor at that
time. Besides Zilog, other new manufacturers suciMastek, NEC, SHARP and SGS appeared
soon. The Z80 was the heart of many computers asctspectrum, Partner, TRS703, Z-3 and
Galaxy in our country.

In 1976 Intel came up with an upgraded version-bit8nicroprocessor called the 8085. However,
the Z80 was so much better that Intel lost theldaaBEven though a few more microprocessors
appeared later on the market (6809, 2650, SC/MP, eteerything was actually decided. There
were no such great improvements which could makeufaaturers to change their mind, so the
6502 and Z80 along with the 6800 remained chiefasgntatives of the 8-bit microprocessors of
that time.

Microcontroller versus microprocessor

A microcontroller differs from a microprocessor many ways. The first and most important
difference is its functionality. In order that no@rocessor may be used, other components such as
memory or for data transmission must be added .td&ven though the microprocessors are
considered to be powerful computer machines, the@k point is that they are not adjusted to
communication to peripheral environment.

Simply, In order to communicate with peripheral ieonment, the microprocessors must use
specialized circuits added as external chips. medns in short that microprocessors are the pure
heart of the computers. That is how it was whey tpeared and the same is now.

Microprocessor

Oscillator
0 - 40MHz

2 Parls

< Microcontroller

Fig. 0-1 Microcontroller versus Microprocessor

On the other hand, microcontroller is designed ¢oall of that in one. No other specialized
external components are needed for its applicdiemause all necessary circuits which otherwise
belong to peripherals are already built into itinltany case saves the time and space needed to
design a device.

BASIC CONCEPTS

Did you know that all people can be classified iatee of 10 groups- those who are familiar with
binary number system and those who are not familieilr it. You don’t understand? That means
that you still belong to the later group. If younwado change your status read the following text.
Text describing briefly some of the basic conceyssd further in this book (just to be sure that we
discuss the same issues).

World of numbers

Mathematics is such a good science! Everythingitogical and is as simple as that. The whole
universe can be described with ten digits only., Bloes it really have to be like that? Do we need
exactly ten digits? Of course not, it is only a teabf habit. Remember the lessons from the
school. For example, what does the number 764 nfean:units, six tens and seven hundreds.
Simple! Could it be described in a bit more comgied way? Of course it could: 4 + 60 + 700.
Even more complicated? Naturally: 4*1 + 6*10 + 7610Could this number look a bit more

“scientific”? The answer is yes: 4*10"0 + 6*10"17¥10"2. What does it actually mean? Why do
we use exactly these numbers: 100, 101 and 102y?isMhalways about the number 10? That is

4

because we use ten different digits (0, 1, 2,,..9)8 In other words, because we use base-10
number system, i.e. decimal number system.

Hundreds (second position in number)
Tens (first position in number)
’7 Units (zeroth position in number)

[764 = 4+ 60 + 700
=107

‘ 10 = 10°

— 100= 10°

764 =41+ 610 + 7-100

The number 764 represented

in three different ways

764 = 4-10° + 610" + 7-10°
L~
[Base-10 number system |

Fig. 0-2 The number 764 represented in three @iffeways
Binary number system

What would happen if only two digits would be usédand 1? Or if we would not know to
determine whether something is 3 or 5 times grethi@n something else? Or if we would be
restricted when comparing two sizes, i.e. if weldanly state that something exists (1) or does
not exist (0)? Nothing special would happen, we ldbdeep on using numbers in the same way,
but they would look a bit different. For exampld:011010. How many pages of a book does the
number 11011010 include? In order to learn thdtpuothe same logic like in the previous
example, but in inverse order. Have in mind thhkthas$ is about mathematics with only two digits-
0 and 1, i.e. base-2 number system (binary numjsters).

Seventh position in number

Zeroth position in number

Base-2 number system

|
11011010 =127+ 1-2° + 0-2° + |- 2* + 1-22 + (0-2° + 12" + O-2°

b

11011010 =128 +64 + 0 +16 + 8 + 0 + 2 + 0 = 218

[Number 218 in binary system | INumber 218 in decimal system |

Fig. 0-3 The number 218 represented in binary auihthl system

Clearly, it is the same number represented in tiferdnt ways. The only difference is in the
number of digits necessary for writing some numere digit (2) is used to write the number 2 in
decimal system, whereas two digits (1 and 0) aeel i write that number in binary system. Do
you now agree with the first sentence in this té&#lcome to the world of binary arithmetic! Do
you have any idea where it is used?

Excepting strictly controlled laboratory conditigrise most complicated electronic circuits cannot
with accuracy determine difference between twoss(ago voltage values, for example) if they are
too small (lower than several volts). The reasamngHat are electrical noises and something quite
uncertainly called “realistic working environmentunpredictable changes of power supply
voltage, temperature changes, tolerance to valubsilb in components etc.). Imagine a computer
which would operate upon decimal numbers bers bggeizing 10 digits in the following way:
0=0V, 1=5V, 2=10V, 3=15V, 4=20V... 9=45V 1? Did dody say batteries? Far simpler solution
is the use of binary logic where 0 indicates tlnare is no voltage and 1 indicates that there is
voltage. Simply, it is easier to write 0 or 1 ireleof “there is no voltage” or “there is voltag#’is

so called logic zero (0) and logic one (1) whickctlonics perfectly cope with and easily performs
all those endlessly complex mathematical operatitins apparently electronics which in reality
applies mathematics in which all numbers are regmtesl by two digits only and in which it is only
important to know whether there is voltage or nOf. course, we are talking about digital
electronics.

Hexadecimal number system

At the very beginning of the computer developmentvas realized that people had many
difficulties in handling binary numbers. Becausetlwdt, a new number system which facilitated
work has been established. This time, it is abomlver system using 16 different digits. The first
ten digits are the same as digits we are used tb @ 3,... 9) but there are six digits moreoider

to keep from making up new symbols, the six lettdralphabet A, B, C, D, E and F are used. In
consequence of that, a hexadecimal number systesistiog of digits: O, 1, 2, 3,4, 5,6, 7, 8, 9,
A, B, C, D, E, F has been established. What igtirpose of this seemingly bizarre combination?
Just look how perfectly everything fits the stobpat binary numbers.

A FD
e

8-digit binary number—= 1010 1111

Same number in hexadeci-
mal system

Fig. 0-4 Binary and Hexadecimal number

The largest number that can be represented byatybdhgits is the number 1111. It corresponds to
the number 15 in decimal system. That number tsekxadecimal system represented by only one
digit F. It is the largest one-digit number in hdgaimal system. Do you see how skillfully it is
used? The largest number written with eight birgigits is at the same time the largest two-digit
hexadecimal number. Have in mind that the compuges 8-digit binary numbers. Accidentally?

BCD code

BCD code is actually a binary code for decimal narsbonly. It is used to enable electronic
circuits to communicate in decimal number systerth yweripherals and in binary system within
“their own world”. It consists of 4-digit binary mbers which represent the first ten digits (0,,1, 2

6

3 ... 8,9). Simply, even though four digits cawegiotal of 16 possible combinations, only firgt te
are used.

Number system conversion

Binary number system is the most commonly usedind®csystem is the most understandable
while hexadecimal system is somewhere between thAémrefore, it is very important to learn
how to convert numbers from one number system tdhan, i.e. how to turn series of zeros and
units into values understandable for us.

Binary to decimal number conversion

Digits in a binary number have different values efgfing on their position in that number.
Additionally, each position can contain either 10oand its value may be easily determined by its
position from the right. To make the conversioradbinary number to decimal it is necessary to
multiply values with the corresponding digits (Apand add all the results. The magic of binary to
decimal number conversion works...You doubt? Laatkea example:

110 = 1*2"2 + 1*2*"1 + 0*2"0 =6

It should be further noticed that for decimal nunsbigom O to 3 it is enough to have two binary

digits. For greater values, new binary digits mustadded. Thus, for numbers from 0 to 7 it is

enough to have three digits, for numbers from 05ofour digits etc. Simply speaking, the largest

binary number consisting of n digits is obtainedewlhe base 2 is raised by n. The result should
be afterwards subtracted by 1. For example, if n=4:

2M-1=16-1=15

Accordingly, using 4 binary digits it is possible tepresent decimal numbers from 0 to 15,
including these two digits, which amounts to 16adént values in total.

Hexadecimal to decimal number conversion

In order to make conversion of a hexadecimal nunibetecimal, each hexadecimal digit should
be multiplied with the number 16 raised by it’s pios value. For example:

A37E (number in hexadecimal system)

\—]4']60—]4'] = 14
716" =716 = 112

3-16°=3-256 = T68
10-16% = 10-4096 = 40960
41854 (same number in decimal system)

Fig. 0-5 Hexadecimal to decimal number conversion
Hexadecimal to binary number conversion

It is not necessary to perform any calculation tideo to convert hexadecimal number to binary
number system. Hexadecimal digits are simply reqglaby the appropriate four binary digits.

7

Since the maximal hexadecimal digit is equivalentécimal number 15, it is needed to use four
binary digits to represent one hexadecimal digit. &xample:

E4 = 11100100

T T
E 4

Fig. 0-6 Hexadecimal to binary number conversion

(0] o BINARY HEX.
0D 0Oj0oj0OjO/O|/OD|/O| O
100000/ 0/0[1 1
2 0/0/0/0/0/0(1|O0| 2
3 0/0/0/0/0/0O[1]|1]| 3
4 0/0/0j0|0|1|0|D| 4
5 0 0/0/0DjO|1/D[1] 5
6 0000011 |0| B
7.0/ 0/0/0(0/1 (11| 7
g 00/0j0j1/0/0|0 8
9 o)0/0/O(1|/O|D|1| 9

10 0/ 0/ 0|0O|1]/0[1]/0| A
11 0|0(0j0D|1[0(1|1]| B
i2/0/0/0/0/1 /1|00 C
13 0|00 |0 |1[1(0|1]| D
14 0|0 (0|0 |1[1(1]|0]| E
15 0| 0(0 0|11 (1|1 F
16 |0 /0[(0(1[(0/0[0O[OD| 10
i7/0/0|0|1 /0|00 1] 11

253 111|111 /0|1| FD
254 (1 (1[(1(1[1(1[1/0| FE
255 111|111 |/1]1| FF

Comparative table below contains the values of rers1B-255 in three different number systems.
Why input/output? Because the user can change miésaccording to his/her own needs. These
are, in fact, the only registers in the microcol@ronhose state can be checked by voltmeter!

Marking numbers

Hexadecimal number system is along with binary dedmal number systems considered to be
the most important for us. It is easy to make cosive of any hexadecimal number to binary and
it is also easy to remember it. However, these emions as well as common use of different
number systems may cause confusion. For examplat ddes the statement “It is necessary to
count up 110 products on assembly line” actuallam?eDepending on whether it is about binary,
decimal or hexadecimal system, the result could6bell0 or 272 products, respectively!
Accordingly, in order to avoid misunderstandingffedent prefixes and suffixes are directly added
to the numbers. The prefix $ or Ox as well as thifixsh marks the numbers in hexadecimal
system. For example, hexadecimal number 10AF maly és follows $10AF, 0x10AF or 10AFh.
Similarly, binary numbers usually get the suffix&¥0b, whereas decimal numbers get the suffix
D.

8

Bit

Theory says a bit is the basic unit of informatidet us neglect such a dry explanation for a
moment and take a look at what it is in practicee Bnswer is- nothing special- a bit is a binary
digit. Similar to decimal number system in whiclgits in a number do not have the same value
(for example digits in the number 444 are the samehave different values), the “significance”
of some bit depends on the position it has in lyimarmber. Therefore, there is no point to talk
about units, tens ets. Instead, here it is abord b (rightmost bit), first bit (second from the
right) etc. In addition, since the binary systeresusvo digits only (0O and 1), the value of one bit
can be O or 1.

Do not let you be confused if you find some bit kiakie 4, 16 or 64. It means that bit's values are
represented in decimal system. Simply, we havesganhuch accustomed to the usage of decimal
numbers that these expressions became commonuld e correct to say for example, “the value

of the sixth bit in binary number is equivalentdecimal number 64”. But we all are just humans

and a habit does its own...Besides, how woulduhdd’number: one-onezero- one-zero...”

Byte

A byte or a program word consists of eight bitscpthnext to each other. If a bit is a digit, it is
logical that bytes represent numbers. All matheraatbperations can be performed upon them,
like upon common decimal numbers. As It is casé wigits of any other number, byte digits do
not have the same significance. The largest vaaigetine left-most bit called most significant bit
(MSB). The right-most bit has the least value amdhierefore called least significant bit (LSB).
Since eight zeros and units of one byte can be cwdbn 256 different ways, the largest decimal
number which can be represented by one byte ig@¥bcombination represents zero).
Concerning terminology used in computer sciencesoacept of nibble should be clearified.
Somewhere and somehow, this term referred to dsaHajte came up. Depending on which half
of the byte we are talking about (left or righbjete are “high” and “low” nibbles.

“High nibble” “Low nibble”

M. M

™1

‘ Byte| Bit 7| Bit 6| Bit 5/ Bit 4| Bit 3| Bit 2| Bit 1| Bit 0

MSE - Most Significant Bit
LSE - Least Significant Bit

Fig. 0-8 High and Low nibbles
Logic circuits

Have you ever wondered what electronics within sdigéal integrated circuit, microcontroller or
processor look like? What do the circuits perforgnoomplicated mathematical operations and
making decisions look like? Do you know that the@emingly complicated schematics comprise
only a few different elements called “logic cir@libr “logic gates”?

The operation of these elements is based on theipies established by British mathematician
George Boole in the middle of the 19th century- nireg before the first bulb was invented! In
brief, the main idea was to express logical fornmeugh algebraic functions. Such thinking was
soon transformed into a practical product which léder evaluated in what today is known as
AND, OR and NO logic circuits. The principle of theperation is known as Boolean algebra. As

9

some program instructions used by the microcomtrgierform the same way as logic gates but in
form of commands, the principle of their operatvwaiii be discussed here.

AND gate

A logic gate “AND” has two or more inputs and ongput. Let us presume that the gate used in
this case has only two inputs. A logic one (1) will

appear on its output only in case both inputs (, _
AND B) are driven to logic one (1). That'’s all! A | OUP“t
Output
Schematic symbol of AND gate is shown in theg 01 0
figure on the right. — 110 0
111 1

Additionally, the table shows mutual dependencec
between inputs and output.

In case the gate has more than two inputs, theiplenof operation is the same: a logic one (1)
will appear on its output only in case all inputs driven to logic one (1). Any other combination
of input voltages will result in logic zero (0) d@s output.

A 1/1/0|0{1/0/0|1 When used in a program, logic AND operation is
{} performed by the program instruction, which will be

- discussed later. For the time being, it is enough t

B |0 remember that logic AND in a program refers to the

1101000
corresponding bits of two registers.
A0 1/0/0/1/0/0/0

OR gate

Similar to the previous case, OR gate also has
two or more inputs and one output. The gat

with only two inputs will be considered in this A B Output

case as well. A logic one (1) will appear on it 0
1
0
1

>

. . Input
output in case either one or another output (. 2

OR B) is driven to logic one (1). In case the OF
gate has more than two inputs, the following
applies: a logic one (1) appears on its output in
case at least one input is driven to logic onelflkase all inputs are driven to logic zero (8¢ t
output will be driven to logic zero (0).

A 1/1/0/0/1/0/0|1
{} In a program, logic OR operation is performed
. between the corresponding registers’ bits- the sasne
B |E1 101000 in logic AND operation.

Result n

10

Not gate

This logic gate has only one input and only A
one output. It operates in an extremely simpl 0l0 0
way. When logic zero (0) appears on its input Input 0 1 1
a logic one (1) appears on its output and vic B 170 1
versa. This means that this gate inverts sign 11 1

by itself and because of that it is sometime
called inverter.

In a program, logic NO operation is performed oe on
|1 “ \U‘D|1 |°|BI1| byte bits. The result is a byte with inverted bitdyte
bits are considered to be a number, inverted vislue
actually a complement of that number, i.e. The

Result mmnumnnm complement of a number is what is needed to adid to
to make it reach the maximal 8 bit value (255).

EXCLUSIVE OR gate

This gate is a bit complicated comparing to otheteg. It A

represents combination of all previously descrigates. It is not Qutput
simple to define mutual dependence of input angututout we

will anyway try to do it. A logic one (1) appears iis output only B

in case the inputs have different logic states.

A |1 100/1 00 1| In a program, this operation is commonly used to
T compare two bytes. Subtraction may be used for the
{} same purpose (if the result is 0, bytes are equiaB.
B Io? U| advantage of this logic operation is that therenas
danger to subtract larger number from smaller one.

10/1/0/0
Result FICIRICACCE

11

Register

A register or a memory cell is an electronic citamhich can memorize the state of one byte. In
other words, what is a byte theoretically, it igister practically.

Fig. 0-17 Register
SFR registers

In addition to the registers which do not have apgcial and predetermined function, every
microcontroller has also a number of registers whdgnction is predetermined by the
manufacturer. Their bits are connected (literatty)nternal circuits such as timers, A/D converter,
oscillators and others, which means that they @ectty in command of the operation of the
microcontroller. If you imagine that as eight swis which are in command of some smaller
circuit within the microcontroller- you are righFRs do exactly that!

Fig. 0-18 SFR registers

12

Input / Output ports

In order that the microcontroller is of any usehats to be connected to additional electronics, i.e
peripherals. For that reason, each microcontréléer one or more registers (called “port” in this
case) connected to the microcontroller pins. Wiputfoutput? Becuse you can change the pin’s
function as you wish. For example, suppose you want device to turn on and off three signal
LEDs and simultaneously monitor logic state of fsensors or push buttons. In accordance with
that, some of ports should be configured so thatetlare three outputs (connected to LEDs) and
five inputs (connected to sensors). It is simplyfguened by software, which means that pin’s
function can be changed during operation.

Mrcrocontro”er ‘

Fig. 0-19 Input / Output ports

One of more important feature of I/O pins is maxiroarrent they can give/get. For the most
microcontrollers, current obtained from one pisusficient to activate a LED or other similar low-

current consumer (10-20 mA). If the microcontroltlers many 1/O pins, then maximal current of
one pin is lower. Simply, you cannot expect allsgio give maximal current if there are more than

80 of them on one microcontroller.

Another important pin feature is to (not) have fupl resistors. These resistors connect pin to
positive power supply voltage and their effect isible when the pin is configured as input

connected to mechanical switch or push button. [aker versions of the microcontrollers have

pull-up resistors connected to and disconnected the pins by software.

Usually, each I/O port is under control of anotB&R, which means that each bit of that register
determines state of the corresponding microcomtrglin. For example, by writing logic one (1) to
one bit of that control register SFR, the apprdprgort pin is automatically configured as intgdtit.
means that voltage brought to that pin can be asddgic 0 or 1. Otherwise, by writing zero to the
SFR, the appropriate port pin is configured as wutfts voltage (OV or 5V) corresponds to the

state of the appropriate bit of the port register.

13

Memory unit

Memory is part of the microcontroller used for datarage. The easiest way to explain it is to
compare it with a big closet with many drawers. [®gg, the drawers are clearly marked so that it
is easy to access any of them. It is enough to kihevdrawer’s mark to find out its contents.

—

|

| [Mem. location 0
I|I Mem. location 1
|I Mem. location 2

f
|

| IMem. location 14
|
| IMem. location 15

Write/Read

Memory components are exactly like that. Each mgnamidress corresponds to one memory
location. The content of any location becomes kndwynts addressing. Memory consists of all
memory locations and addressing is nothing butcsalp one of them. This means that, on one
hand it is necessary to select the desired menogogtibn, on the other hand it is necessary to wait
for the contents of that location. In addition &ad, memory also has to allow writing to these
locations. There are several types of memory withémicrocontroller:

ROM memory (Read Only Memory)

ROM memory is used to permanently save programgbexecuted. Clearly, the size of a program
that can be written depends on the size of this engnToday’s microcontrollers commonly use

16-bit addressing, which means that they are abladdress up to 64 Kb memory, i.e. 65535
locations. For the sake of illustration, if you #ne beginner, your program will rarely exceed timi

of several hundreds instructions. There are sewgrak of ROM.

Masked ROM. Microcontrollers containing this ROM are resenfed the great manufacturers.
Program is loaded into the chip by the manufactunecase of large scale manufacture, the price is

very low. Forget it...

OTP ROM (One Time Programmable ROM). If the microcontnolientains this memory, you
can download a program into the chip, but the m®ocef program downloading is “one-way
ticket”, meaning that it can be done only onceydti after downloading detect some error in a
program, the only thing you can do is to correanitl download that program to another chip.

14

UV EPROM (UV Erasable Programmable ROM) Both manufactupraress and characteristics
of this memory are completely identical to OTP RQf\dwever, the package of this
microcontroller has recognizable “window” on thepapside. It enables surface of the silicon chip
to be lit by an UV lamp, which has for the reshlittcomplete program is cleared and a new
program download is enabled.

Installation of this window is very complicated, it normally affects the price. From our point
of view, unfortunately- negative...

Flash memory. This type of memory was invented in the 80s botatories of INTEL company
and were represented as successor of UV EPROMe S contents of this memory can be
written and cleared practically unlimited numbertiofies, the microcontrollers with Flash ROM
are ideal for learning, experimentation and smedles manufacture. Becuse of its popularity, the
most microcontrollers are manufactured in flashsier today. So, if you are going to buy a
microcontroller, the right one is definitely Flash!

RAM memory (Random Access Memory).

Once the power supply is off the contents of RAMIeared. It is used for temporary storing data
and intermediate results created and used duranggkration of the microcontroller. For example,
if the program performs addition (of whatever)sihecessary to have a register representing what
in everyday life is called “sum”. For that purpoeeg of the registers in RAM is called “sum” and
used for storing results of addition.

EEPROM memory (Electrically Erasable Programmable ROM)

The contents of this memory may be changed dunuegation (similar to RAM), but remains
permanently saved even upon the power supply gb¢similar to ROM). Accordingly,

EEPROM is often used to store values, created guperation, which must be permanently
saved. For example, if you design an electronik tmcan alarm, it would be great to enable the
user to create and enter a password on his/her@fwourse, a new password must be saved upon
power supply goes off. In such and similar cadesjdeal solution is the microcontroller with
embedded EEPROM.

Interrupt

The most programs use somehow interrupts in regutagram execution. What does it actually
mean? The purpose of the microcontroller is mainlgeact on changes in its surrounding. In other
words, when some event takes place, the microdtertanes something... For example, when you
push a button on remote controller, the microcdlaravill register it and respond to the order by
changing a channel, turn the volume up or down Ete bottom line is that the microcontroller
spends the most of its time in endlessly checkifgpabuttons- for hours, days... It's not practjcal
is it?

15

Because of and similar situations, the microcoldrohas learned during its evolution a trick.
Instead of checking each pin or bit constantly, tiierocontroller has left the “wait issue” to the
“specialist” which will react only in case somethiworth attention happens.

Signal which inform the central processor abouhsesent is called an INTERRUPT.

Central Processor Unit - CPU

As its name indicates, this is a unit which mort@nd controls all processes inside the
microcontroller. It consists of several smallertsnof which the most important are:

» Instruction Decoder is a part of electronics which recognizes prograstructions and
runs other circuits on the basis of that. The fundion set” which is different for each
microcontroller family expresses the abilities lutcircuit.

» Arithmetical Logical Unit (ALU) performs all mathematical and logical operatiopsru
data.

* Accumulator is a SFR closely related to the operation of Altls a kind of working desk
used for storing all data upon which some operasbould be performed (addition,
shift/move etc.). It also stores results ready use in further processing. One of SFRs,
called Status Register (PSW), is closely relatetthécaccumulator. It shows at any moment
the “status” of a number stored in the accumul@tamber is greater or less than zero etc.).

Addresses

Instruction
Decoder

Fig. 0-22 Central Processor Unit — CPU

Bus

Physically, the bus consists of 8, 16 or more wild®ere are two types of buses: address and data
bus. The first one consists of as many lines agsseey for memory addressing. It is used to
transmit address from CPU to memory. The laterisras wide as data, in our case it is 8 bits or
wires wide. It is used to connect all circuits desthe microcontroller.

Serial communication

Connection between the microcontroller and periglseria input/output ports is the ideal solution
for shorter distances- up to several meters. Howeaweother cases - when it is necessary to
establish communication between two devices ondpdgstances or when for some other reason it
is not possible to use parallel connection - susim®le solution is out of question. In those and
similar situations, serial communication is theusioh imposing itself.

16

Today, most microcontrollers have built in seveliffierent systems for serial communication as a
standard equipment. Which of these systems willdel in the very case depends on many factors
of which the most important are:

* How many devices the microcontroller has to exclkataa with?
* How fast the data exchange has to be?

* What is the distance between devices?

» lIsit necessary to send and receive data simultehgd

One of the most important thing concerning semahmunication is th&rotocol which

Fig. 0-23 Serial communication

should be strictly observed. It is a set of ruldsclv must be applied in order the devices can
correctly interpret data they mutually exchangertérately, the microcontrollers automatically
take care of that, so the work of the programmer/is reduced to simple write (data to be sent)
and read (received data).

Baud Rate
The termBaud rateis commonly used to denote the number of bitssteaned per second [bps].

It should be noted that it refers to bits, not Byt is usually required by the protocol that each
byte is transferred along with several control.ditsneans that one byte in serial data stream may

17

consist of 11 bits. For example, if the baud rat800 bps then maximum 37 and minimum 27
bytes may be transferred per second, which depamége of connection and protocol in use.
The most commonly used serial communication systaers

12C (Inter Integrated Circuit) is a system used whendlstance between the microcontrollers is
short and specialized integrated circuits of oka generation (receiver and transmitter are usually
on the same printed circuit board). Connectionsisldished via two conductors- one is used for
data transfer whereas another is used for synctaton (clock signal). As seen in figure, in such
connection, one device is always master. It perfoatidressing of one slave chip (subordinated)
before communication starts. In this way one miontimller can communicate with 112 different
devices. Baud rate is usually 100 Kb.sec (standavde) or 10 Kb/sec (slow baud rate mode).
Systems with the baud rate of 3.4 Mb/sec have tgcappeared. The distance between devices
which communicate via an inter-integrated circwis Ios limited to several meters.

[~ MASTER

| Microcontroller

SPI (Serial Peripheral Interface Bus) is a system derial communication which uses four
conductors (usually three)- one for data receivimgg for data sending, one for synchronization
and one (alternatively) for selecting device to owmicate with. It is full duplex connection,
which means that data are sent and received sinealtsly. Maximal baud rate is higher than in
I2C connection.

UART (Universal Asynchronous Receiver/Transmitter)

As seen from the name itself, this connection ygelsronous, which means that a special line for
clock signal transmission is not used. In someasitas this feature is crucial (for example, radio
connection or infrared waves remote control). Sty one communication line is used, both
receiver and transmitter operate at the same predifate in order to maintain necessary
synchronization. This is a very simple way of tfensng data since it basically represents
conversion of 8-bit data from parallel to seriainfat. Baud rate is not high and amounts up to 1
Mbit/sec.

18

Oscillator

Even pulses coming from the oscillator enable haimand synchronous operation of all circuits
of the microcontroller. The oscillator module isiaBy configured to use quartz crystal or ceramic
resonator for frequency stabilization. Furthermatecan also operate without elements for
frequency stabilization (like RC oscillator). Itimmportant to say that instructions are not exegtute
at the rate imposed by the oscillator itself, bewesal times slower. It happens because each
instruction is executed in several steps. In sonmwarontrollers, the same number of cycles is
needed to execute any instruction, while in oth#re, execution time is not the same for all
instructions. Accordingly, if the system uses quamtystal with frequency of 20 Mhz, execution
time of an instruction is not 50nS, but 200, 40800 nS, depending on the type of MCU!

Power supply circuit

There are two things worth attention concerningntinerocontroller power supply circuit:

Brown out is a potentially dangerous state whictuee at the moment the microcontroller is being
turned off or in situations when power supply vgéadrops to the limit due to powerful electric
noises. As the microcontroller consists of sevenaluits which have different operating voltage
levels, this state can cause its out-of-controlggarance. In order to prevent it, the microcongoll
usually has built-in circuit for brown out resethi§ circuit immediately resets the whole
electronics when the voltage level drops belowlithé.

Reset pin is usually marked as MCLR (Master Cleasd® and serves for external reset of the
microcontroller by applying logic zero (0) or ori®,(depending on type of the microcontroller. In
case the brown out circuit is not built in, a sim@xternal circuit for brown out reset can be
connected to this pin.

19

Timers/Counters

The microcontroller oscillator uses quartz crydtal its operation. Even though it is not the
simplest solution, there are many reasons to uddainely, since the frequency of such oscillator
is precisely defined and very stable, the pulsgsiierates are always of the

E— 1L

~ um—
s TENNEENR—{7)—

0-255

EaE o

Fig. 0-27 Timers/Counters

same width, which makes them ideal for time measarg. Such oscillators are used in quartz
watches. If it is necessary to measure time paksegleen two events, it is just enough to count
pulses coming from this oscillator. That is exagtlyat the timer does.

Most programs use somehow these miniature electfstopwatches”. These are commonly 8- or
16-bit SFRs and their content is automatically encented by each coming pulse. Once a register
is completely loaded - an interrupt is generated!

If the timer registers use internal quartz os@lidor their operation then it is possible to measu
time between two events (if the register value isat the moment measurement has started, and
T2 at the moment it has finished, then the elapiseel is equal to the result of subtraction T2-T1).
If the registers use pulses coming from externat@then such a timer is turned into a counter.
This is only a simple explanation of the operatiself.

20

How does a timer operate?

In practice, everything works as follows: pulsesngtg from quartz oscillator are once per each
machine cycle directly or via prescaler broughthi® circuit which increments number in the timer
register. If one instruction (one machine cyclegtdafor four quartz oscillator periods then, by
embedding quartz with the frequency of 4MHz, thisner will be changed a million times per
second (each microsecond).

Timer register

AMHz - 1MHz . Start & =~ @ Stop
oscl % > EODIDDON g Nimber b |

+1, +1, +1...
2l

[

(&)y Elapsed time = B-A [uS]

Fig. 0-28 How do timers operate?

It is easy to measure short time intervals (up % Bhicroseconds) in a way described above
because it is the largest number that one registercontain. This obvious disadvantage may be
easily overcome in several ways by using sloweillagar, registers with more bits, prescaler or
interrupts. The first two solutions have some weskes so it is more recommended to use
prescaler and/or interrupt.

Using prescaler in timer operating

A prescaler is an electronic device used to reduitequency by a pre-determined factor. Meaning
that in order to generate one pulse on its outpistnecessary to bring 1, 2 , 4 or more pulsdtsto
input. One such circuit is built in the microcorikeo and its division rate can be changed from
within the program. It is used when it is necessanneasure longer periods of time.

One prescaler is usually shared by timer and wdbdhtimer, which means that it cannot be used

by both of them simultaneously.
Timer register

4MHz 1MHz 1IN Start # ng @4 Stop
OSC.- Prescaler — INRIZYN -------------o-e- i Number B|

F mm o
lapsed time = N x (B-W

Fig. 0-29 Using prescaler in timer operating

21

Using interrupt in timer operating

If the timer register consists of 8 bits, the latgeumber that can be written to it is 255 (forld6-
registers it is the number 65.535). If this numiseexceeded, the timer will be automatically reset
and counting will start from zero. This conditios ¢alled overflow. If enabled from within the
program, such overflow can cause interrupt, whichegy completely new possibilities. For
example, the state of registers used for counteuprads, minutes or days can be changed in an
interrupt routine. The whole this process (excepgrrupt routine) is automatically performed “in
the background”, which enables main circuits ofrtiierocontroller to perform other operations.

Timer register

. z L
AMHz 1MH 1IN Start 2 o ®& Stop e d
OSC.H % — Prescaler— IIBIZN -----2--:--x--- .{—!—-}
0-2
]_“]}J > Interrupt
Additional register
@& Stop ™
| [Number C| s ?@7

We = N x (256C+B-A) M

Fig. 0-30 Using interrupt in timer operating

The picture above illustrates the use of interinptimer operating. Delays of arbitrary duration
with minimal interference main program execution b& easily obtained by assigning a prescaler
to the timer.

Counters

If a timer is supplied with pulses over the micnaroller input pin then it turns into a counter.
Clearly, It is about the same electronic circutheTonly difference is that in this case pulseseo b
counted come through the ports and their duratiadt) is mostly not defined. That is why they
cannot be used for time measurement, but can liktosemeasure anything else: products on an
assembly line, number of axis rotation, passengfergdepending on sensor in use).

Watchdog Timer

As name itself indicates a lot about its purposetdidog Timer is a timer connected to a
completely separate RC oscillator within the miomtcoller.

If the watchdog timer is enabled, every time it misuup to end, the microcontroller reset occurs
and program execution starts from the first indtaunc The point is to prevent this from happening
by using a specific command. The whole idea is dbasethe fact that every program is executed
in several longer or shorter loops.

If instructions which reset the watchdog timer se€on the appropriate program locations, besides
commands being regularly executed, then the operafti watchdog timer will not affect program

22

execution. If for any reason (usually electricaises in industry), the program counter “gets stuck”
on some memory location from which there is norretthe watchdog will not be cleared and the
register’s value being constantly incremented kedich the maximum et voila! Reset occurs!

Program

Instruction 1
Instruction 2

100% —» [] Instruction CLRWDT
lllllll'_

0% <+—

Instruction CLRWDT

Fig. 0-31 Watchdog Timer
A/D Converter

External signals are usually fundamentally différéom those the microcontroller understands
(zero and one), so that they have to be conventedder the microcontroller can understand them.
An analog-to digital converter is an electronicait which converts continuous signals to discrete
digital numbers. This module is therefore useddovert some analog value into binary number
and forwards it to the CPU for further processimgother words, this module is used for input pin
voltage measurement (analog value). The resultedsarement is a number (digital value) used
and processed later in the program.

JR———— - AEEEL l.,
llllll-

...

Fig. 0-32 A/D Converter

23

Internal Architecture

All upgraded microcontrollers use one of two bad&sign models called Harvard and von-
Neumann architecture. What is it about?
Briefly, it is about two different ways of data éwemnge between CPU and memory.

von-Neumann architecture

x8

Microcontrollers using this architecture has onheanemory block and one 8-bit data bus. As all

data are exchanged by using these 8 lines, thissbmgerloaded and communication itself is very

slow and unefficient. The CPU can either read astruction or read/write data from/to the

memory. Both cannot occur at the same time sineeirtetructions and data use the same bus

system. For example, if some program line saysRAd¥l memory register called “SUM” should

be incremented by one (instruction: incf SUM), thierocontroller will do the following:

1. Read the part of the program instruction specifWigAT should be done (in this very case it
is the “incf” instruction for increment).

2. Read further the same instruction specifying upddl@H data it should be performed (in this
very case it is the “SUM” register).

3. After being incremented, the contents of this egishould be written to the register from
which it was read (“SUM” register address).

The same data bus is used for all these interneedrations.

Harvard architecture

x8 x12 (14, 16)

24

Microcontrollers using this architecture have twiffedlent data buses. One is 8-bit wide and
connects CPU to RAM memory. Another one consistseokral lines (12, 14 or 16) and connects
CPU to ROM memory. Accordingly, the CPU can readretruction and perform a data memory
access at the same time. Since all RAM memory tergisare 8- bit wide, all data within the
microcontroller are exchanged in the same suchdborAdditionally, during program writing, only
8-bit data are considered. In other words, all gan ever change from within the program and all
you can affect will be 8- bit wide. Aprogram writtdor some of these microcontrollers will be
stored in the microcontroller internal ROM memonyon having being compiled into machine
language. However, these memory locations do ne¢ Babut 12, 14 or 16 bits. The rest of bits-
4, 6 or 8- represents the instruction itself spaéeg to CPU what to do with an 8-bit data.

The advantages of such design are the following:

» All data in a program are one byte (8 bit) wide. deta bus used for program reading has
several lines (12, 14 or 16), both instruction dath can be read simultaneously by using these
spare bits (it is familiar at once WHAT and upon WH). Because of that, all instructions are
executed in only one instruction cycle. The onlceaption is jump instructions which are
executed in two cycles.

» Owing to the fact that a program (ROM memory) aechgorary data (RAM memory) are
separate, the CPU can execute two instructionslgineously. Simply, while RAM memory
read or write is in progress (end of one instron)ti the next program instruction is being read
via another bus.

* When using microcontrollers with von-Neumann amttiire one never knows how much
memory is to be occupied by some program. In aegragch program instruction occupies two
memory locations (one contains information on WHARould be done, whereas another
contains information upon WHICH data it should lwne). However, it is not a rule, but the
most common case. In microcontrollers with Harvarchitecture, program bus is wider than
one byte, which allows each program word to cor@ishstruction and data. In other words:
one program word- one instruction.

INSTRUCTION SET

movliw Ox3F
movwE TEMP]
btfse MAX3, 7T
goto check
btfsc HMAX3. 6

goto opening

btfse MAX3, 5

goto closing
T =

All instructions that can be understood by the pgontroller are known as instruction set. When
you write a program in assembly language, you #gttiall a story” by specifying instructions in
order they should be executed. The main restrictiothis process is a number of available
instructions. The manufacturers stick to one oftiin@ following strategies:

25

RISC (Reduced Instruction Set Computer)

In this case, the idea is that the microcontrotEzognizes and executes only basic operations
(addition, subtraction, copying etc.). All other mocomplicated operations are performed by
combining these (for example, multiplication isfpemed by performing successive addition). The
constrains are obvious (as if you try, by usingyoamlfew words, to explain to someone how to
reach the airport in some other city). Howeveryehare also some great advantages. First of all,
this language is easy to learn. Besides, the nootoaller is very fast so that it is not possilde t
see all the arithmetic “acrobatics” it performs.eTisser can only see the final result of all those
operations. At last, it is not so difficult to eapl where the airport is if you use the right words
For example: left, right, kilometer etc.

CISC (Complex I nstruction Set Computer)

You already catch it- CISC is the opposite of RIS@GErocontrollers designed to recognize more
than 200 different instructions can do really macid are very fast. However, one should know
how to take all that such a rich language offeifsictvis not easy at all...

HOW TO MAKE THE RIGHT CHOICE

Ok, you are the beginner and you have made decisidet yourself go on an adventure of
working with the microcontrollers. Congratulatioos the choice! However, it is not so easy to
choose the right microcontroller as it looks likefiest sight. The problem is not a small range of
devices, but the opposite!

Before you start designing some device based omibecontroller, think of the following: how
many input/output lines it is necessary for operatshould it perform some other operations than
to turn relay on/off, does it need some specializemtiule such as serial communication, A/D
converter etc. When you create a clear picturetadtwou need, the selection range is considerably
reduced, and it is time to think of price. Is yquan to have several same devices? Several
hundreds? A million? Anyway, you catch the point...

If you think of all these things for the very firsine then everything seems a bit confusing. For
that reason, go step by step. First of all, setbet manufacturer, i.e. the family of the
microcontrollers you can easily provide. After thstudy one particular model. Learn as much as
you need, do not go into details. Solve a spegifablem and something incredible will happen-
you will be able to handle any model belonginghat family.

More or less, everything reminds of riding bicyclter several unavoidable bruises at the
beginning, you will manage to keep balance and véllable to easily ride any other bicycle. And
of course, you will never forget the skill in pragnming just as you will never forget riding

bicycle!

PIC microcontrollers

PIC microcontrollers designed by Microchip Techmyl@re likely the right choice for you if you
are the beginner. Here is why...

The real name of this microcontroller is PICmicRe(ipheral Interface Controller), but it is better

known as PIC. lIts first ancestor was designed in518y General Instruments. This chip called
PIC1650 was meant for totally different purposest Mnger than ten years after, by adding

26

EEPROM memory, this circuit was transformed intaeal PIC microcontroller. Nowadays,
Microchip Technology announces a manufacturindief billionth sample...

In order you can better understand the reasongsfgopularity, we will briefly describe several
important things.

. ROM | RAm | Clock |, |Resolution o o 8116 —bitt Serial | PWM
ety [Kbytes] | [bytes] A | e Inputs o D ators | Timers Comm Outputs Oz
y y [MHZz] P Converter ' P
Base-Line 8 - bit architecture, 12-bit Instruction Word Length
PIC10FXXX 06332' 16-24/6-8| 4-8 | 0-2 8 0-1 1x8 - - -
PIC12FXXX |0.75-1.%525-38| 8 4-8 | 0-3 8 0-1 1x8 - - EEPROM
25- |14 -
PIC16FXXX | 0.75-3 134 | 44 20 0-3 8 0-2 1x8 - - EEPRCM
18 - Vdd =
PIC16HVXXX 15 25 20 20 - - - 1x8 - - 15V
Mid-Range 8 - bit architecture, 14-bit Instruction World Length
. 64 - 1-2x8
-3t - - -
PIC12FXXX |1.75-3.5 128 8 20 0-4 10 1 1x16 0-1 | EEPROM
PICI2HVXXX = 175 | 64 = 8 20 0-4 10 1 1-2x8 : 0-1 .
1x16
64- |14 - 1-2x8| USART I2C
PIC16FXXX | 1.75 - 14 368 | 64 20 | 0-13| 8or10 0-2 1x16 SPl 0-3 -
64 - |14 - 2x81x| USART I2C
PIC16HVXXX |1.75 - 3. 128 | 20 20 | 0-12 10 2 16 Spl - -
High-End 8 - bit architecture, 16-bit Instruction Word Length
USB2.0
256 - | 18 - 0-2x8| CAN2.0
PIC18FXXX | 4-128 3936 | 80 32-48/4-16| 10or12 0-3 2 -3 %16 USART 12C 0-5 -
SPI
USB2.0
1024 - | 28 - 0-2x8| USART
PIC18FXXJXX | 8-128 3936 | 100 40 -48/10 - 16 10 2 2 -3 x 16 Ethernet 12C 2-5 -
SPI
768 - | 28 - 4 1x83x| USART I2C
PIC18FXXKXX| 8-64 3936 | 44 64 |10-1% 10 2 16 Sp 2 -

All PIC microcontrollers use harvard architectunghich means that their program memory is
connected to CPU via more than 8 lines. Dependmthe bus width, there are 12-, 14- and 16-bit
microcontrollers. The table above shows the maatures of these three categories.

As seen in the table on the previous page, exagplifi-bit monsters™ PIC 24FXXX and PIC
24HXXX- all PIC microcontrollers have 8-bit harvaadchitecture and belong to one out of three
large groups. Therefore, depending on the sizepbgram word there are first, second and third
category, i.e. 12-, 14- or 16-bit microcontrollekaving similar 8- bit core, all of them use the
same instruction set and the basic hardware ‘sk&lebnnected to more or less peripheral units.

In order to avoid tedious explanations and end&esy about the useful features of different
microcontrollers, this book describes the operatérone particular model belonging to “high

middle class”. It is about PIC16F887- powerful eglotio be worth attention and simple enough to
be easily presented to everybody.

27

Chapter 1: PIC16F887 Microcontroller - Device Overvew

PIC16F887 is one of the latest productshitrochip. It features all the components which
upgraded microcontrollers normally have. For it farice, wide range of application, high quality
and easy availability, it is an ideal solution ppécations such as: control of different processes
industry, machine control device, measurement fiémdint values etc. Some of its main features
are listed below.

RISC architecture
Only 35 instructions to learn
All single-cycle instructions except branches
Operating frequency 0-20 MHz
Precision internal oscillator
Factory calibrated
Software selectable frequency range of 8MHz to 32KH
Power supply voltage 2.0-5.5V
Consumption: 220uA (2.0V, 4MHz), 11uA (2.0 V, 32 KHb0nA (stand-by mode)
Power-Saving Sleep Mode
Brown-out Reset (BOR) with software control option
35 input/output pins
High current source/sink for direct LED drive
software and individually programmatgall-up resistor
Interrupt-on-Change pin
8K ROM memory in FLASH technology
Chip can be reprogrammed up to 100.000 times
In-Circuit Serial Programming Option
Chip can be programmed even embedded in the tdegete
256 bytes EEPROM memory
Data can be written more than 1.000.000 times
368 bytes RAM memory
A/D converter:
14-channels
10-bit resolution
3 independent timers/counters
Watch-dog timer
Analog comparator module with
Two analog comparators
Fixed voltage reference (0.6V)
Programmable on-chip voltage reference
PWM output steering control
Enhanced USART module
Supports RS-485, RS-232 and LIN2.0
Auto-Baud Detect
Master Synchronous Serial Port (MSSP)
supports SPI and 12C mode

28

RE3IMCLRVpp
RANANO/ULPWUIC12ING-
RAVANAICI2INT-
RAZ2IANZVref-/CVrefiCZIN+
RAJANINVref+/C1IN+
RAATOCKLCIOUT
RASIAN4/SSICZOUT
REQIANS

RE1IANG

RE2IANT

Vdd

Vs

RATIOSCA/CLKIN
RAGIOSC2/CLKOUT
RCOM1OSOMICK]
RC1MTI0SIICCP2
RCZIP1AICCP
RCISCKISCL

ROO

RO

RBIVAN1TZANT
REAANTNCI2INI-
RB2/ANE
RENANS/PGMIC121M2-

&
a
g
8
£
&
-

O RC2PIAICCPY

| —n
Iy

REIMCLRVpP
RANANKULPWU/C12ING-]

RBS/ANIZTIG [
REBICSPCLE [
RETACSPDAT

RAVANTC12INT-
RAZIANZNref/CVrefiC2IN+ [

RANANIVref+C1IN+ IO

RETICSPDAT
RBGICSPCLK
RESIAN1ITIG
RB4IANTT
REIANPGMC2INZ-
REBZIANE
RB1/ANTDIC12IN3-
REOANTZINT

Vdd

Vss

ROTIP1D

RDEIPI1C

ROSIP1B

RD4

RCTIRX/DT
RCETAICK
RCE/SDO
RC4ISDISDA

RD3

RD2

NC
RCOT1OSOMICK]
RABOSCHCLKOUT
RAT/OSCHCLKIN
Was

Vdd

REZIANT

RE1/ANE

RED/ANS
RASIANAISSICIOUT
RAMTOCKICIOUT

29

Oscillator
0 - 20MHz

Internal
Oscillator

Program
Memory 8K

CPU

A/D S (35 instructions)
Converter 3 pwwm

EEPROM (256)

Interrupts WDT
vret CCPIPWM

modules ——

RESET

I/O Ports (25mA) Power Supply
PortA ! PortB ! PortC | “ 2-55V e

Pin Description

As seen in picture above, the most pins are muiftctional. For example, designator
RA3/AN3/Vref+/C1IN+ for the fifth pin specifies thellowing functions:

RAS3 Port A third digital input/output
ANS3 Third analog input

Vref+ Positive voltage reference
C1IN+ Comparator Clpositive input

This small trick is often used because it makesni@ocontroller package more compact without
affecting its functionality. These various pin ftieos cannot be used simultaneously, but can be

changed at any point during operation.

30

In the following tables, all pins’ numbers refertb@ PDIP 40 microcontroller.

Number

General purpose input Port E

Reset pin. Low logic level on this pin
resets microcontroller.

Vpp Programming voltage
RAO General purpose /O port A
ANOD A/D Channel 0 input
ULPWU Stand-by mode deactivation input
C12INO- Comparator C1 or C2 negative input
RA1 General purpose /O port A
RA1/AN1/C12IN1- 3 AN1 A/D Channel 1
C12IN1- Comparator C1 or C2 negative input
RAZ General purpose /O port A
AN2 A/D Channel 2

Vref A/D Negative Voltage Reference
RA2/AN2/Vref-/CVref/lC2IN+ 4 " input

Comparator Voltage Reference
Output

CZIN+ Comparator C2 Positive Input

RA3 General purpose /O port A

AN3 A/D Channel 3

Vref+ A/D Positive Voltage Reference Input
C1IN+ Comparator C1 Positive Input

RA4 General purpose /O port A

RA4/TOCKI/C10UT 6 TOCKI Timer TO Clock Input

C10UT Comparator C1 Output

RAS General purpose /O port A

AN4 A/D Channel 4

RE3/MCLRNpp 1 MCLR

RAO/ANO/ULPWU/C12INO- 2

CVref

RAS/AN3Nref+/C1IN+ 5

RAS5/AN4/SS/C20UT 7
SS SPI module Input (Slave Select)
C20UT Comparator C2 Output
REO/ANS 8 REO General purpose |/O port E
ANS A/D Channel 5
RE1/ANG 9 RE1 General purpose |/O port E
ANB A/D Channel 6
RE2/AN7 10 RE2 General purpose /O port E
AN7 A/D Channel 7
Vdd 11 + Positive supply
Vss 12 - Ground (GND)

31

Number

RA7/OSC1/CLKIN

RAG/OSC2/CLKOUT

RCO/M1OSO/T1CKI

RC1/T10SO/T1CKI

RC2/P1A/CCP1

RC3/SCK/SCL
RDO
RD1

RD2
RD3

RC4/SDI/SDA

RC5/SDO

RCE/TX/CK

RC7/RX/DT

13

14

17

18
19
20

21
22

23

24

25

26

0sC1
CLKIN
0SsC2
CLKO
RAG
RCO
T10S0
T1CKI
RCA1
T103SI
CCP2
RC2
P1A
CCP1
RC3
SCK
SCL
RDO
RD1
RD2
RD3
RC4
SDI
SDA
RC5
SDO
RC6
LD,
CK
RC7
RX
DT

General purpose I/O port A

Crystal Oscillator Input

External Clock Input

Crystal Oscillator Output

Fosc/4 Output

General purpose I/O port A

General purpose I/O port C

Timer T1 Oscillator Qutput

Timer T1 Clock Input

General purpose IO port C

Timer T1 Oscillator Input

CCP1 and PWM1 module I/O
General purpose I/O port C

PWM Module Output

CCP1 and PWM1 module I/O
General purpose I/O port C

MSSP module Clock I/O in SPI mode
MSSP module Clock I/0 in I°C mode
General purpose I/O port D

General purpose I/O port D

General purpose I/O port D

General purpose I/O port D

General purpose I/O port A

MSSP module Data input in SPl mode
MSSP module Data I/O in I°C mode
General purpose I/O port C

MSSP module Data output in SPl mode
General purpose I/O port C

USART Asynchronous Output
USART Synchronous Clock

General purpose I/O port C

USART Asynchronous Input

USART Synchronous Data

32

e Description
DIP 40 P

RD5/P1B

RD&/P1C

RD7/P1D

\ss
\/dd

RBO/AN12/INT

RB1/AN10/C12INT3-

RB2/ANS

RB3/ANS/PGM/C12IN2-

RB4/AN1T1

RB5/AN13/T1G

RB6/ICSPCLK

RB7/ICSPDAT

28

29

30

31
32

33

34

35

36

37

38

39

40

Central Processor Unit (CPU)

RD5
P1B
RD6
P1C
RD7Y
P1D

+
RBO
AN12
INT
RBA1
AN10
C12INT3-
RBZ
AN8
RB3
ANS
PGM
C12IN2-
RB4
ANTT
RB5
AN13
T1G
REB
ICSPCLK
REBY
ICSPDAT

General purpose /O port D
General purpose I/O port D
PWM QOutput

General purpose /O port D
PWM Qutput

General purpose /O port D
PWM Output

Ground (GND)

Positive Supply

General purpose /O port B
A/D Channel 12

External Interrupt

General purpose /O port B
A/D Channel 10
Comparator C1 or C2 Negative Input
General purpose /O port B
A/D Channel 8

General purpose /O port B
A/D Channel 9
Programming enable pin
Comparator C1 or C2 Negative Input
General purpose /O port B
A/D Channel 11

General purpose /O port B
A/D Channel 13

Timer T1 External Input
General purpose /O port B
Serial programming Clock
General purpose /O port B
Programming enable pin

Any attempt to explain in detail the operation d?WC would take us too far. Who is anyway
interested in that?! It is important to say thatlCiB made in RISC technology because this fact
can affect you to buy exactly this microcontroller.

RISC stands forReduced Instruction Set Compuytevhich gives the PIC16F887 two great

advantages:

» Its CPU can recognize and execute only 35 simg@untions (In order to program some other
microcontrollers it is necessary to know more tB@f instructions by heart).

» Execution time is the same for all of them andslastlock cycles (oscillator whose frequency
is stabilized by quartz crystal). The only excepsiare jump and branch instructions whose

execution time is twice as long.

It means thathé tmicrocontroller’'s operating speed is

33

20MHz, execution time of each instruc tion will B@0nS, i.e. the program will be executed at
the speed of 5 million instructions per second!

. —
TN
\
-

IRL

Temporary Data E:/\

(RAM memory) . <::| <:3 ROM memory

il

Oscillator, timers, counters...

Memory

This microcontroller has three types of memory- RAAM and EEPROM. All of them will be
separately discussed since each has specific fumdgatures and organization.

ROM Memory

ROM memory is used to permanently save programgbexecuted. That is why it is often called
“program memory”. The PIC16F887 has 8Kb ROM (irataif 8192 locations). Since, in this very
case, ROM is made in FLASH technology, its contesaa be changed by providing special
programming voltage (13V).

Anyway, there is no need to explain it in detaitdase it is automatically performed by means of a
special program on PC and a simple electronic @esatled programmer (not original at all).

Writing program
in assembly language,
{simulator tool), Copy program
compiling to to ROM Memory
machine code

T
=
-~

34

EEPROM Memory

Similar to program memory, the contents of EEPR@Narmanently saved, even upon the power
goes off. However, unlike ROM, the contents of EERMRcan be changed during operation of the
microcontroller. That is why this memory (256 laoas) is a perfect one for permanently saving
results created and used during the operation.

RAM Memory

This is the third and the most complex part of wiontroller memory. In this very case, it consists
of two parts: general-purpose registers and spaangtion registers (SFR).

Even though both groups of registers are cleareghwiower goes off and even though they are
manufactured in the same way and act in the simiégy, their functions do not have many things
in common.

35

General-purpose registers

General-purpose registers are used for storingdesmp data and results created during operation.
For example, if the program performs a counting éample, counting products on the assembly
line), it is necessary to have a register whichdsaor what we in everyday life call “sum”. Since
the microcontroller is not creative at all, it isaessary to specify the address of some general
purpose register and assign it a new function. rApg& program to increment the value of this
register by 1, after each product passes throwsgmsor, should be created.

Therefore, the microcontroller can execute thagm@m because it now knows what and where the
sum which must be incremented is. Similar to tingode example, each program variable must be
preassigned some of general-purpose register.

SFR registers

Special-function registers are also RAM memory fiores, but unlike general-purpose registers,
their purpose is predetermined during manufactupragess and cannot be changed. Since their
bits are physically connected to particular cirguibn the chip (A/D converter, serial
communication module, etc.), any change of thenteats directly affects the operation of the
microcontroller or some of its circuits. For exampby changing TRISA register, the function of
each port A pin can be changed in a way it actnpst or output. Another feature of these
memory locations is that they have their namesigrexg and their bits), which considerably
facilitates program writing. Since high-level pragrming language can use the list of all registers
with their exact addresses, it is enough to spahigyregister’'s name in order to read or change its
contents.

RAM Memory Banks

The data memory is partitioned into four banksoPto access some register during program
writing (in order to read or change its contenits)s necessary to select bank which contains that
register. Two bits of the STATUS register are ugmdbank selecting, which will be discussed
later. In order to facilitate operation, the mosinenonly used SFRs have the same address in all
banks which enables them to be easily accessed.

36

Addr.
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0AR
0Bh
0Ch
0Dh
OEh
OFh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1AR
1Bh
1Ch
1Dh
1Eh
1Fh
20h

7Fh

Name

INDF

TMRO

PCL

STATUS

FSR

PORTA

PORTB

PORTC

PORTD

PORTE

PCLATH

INTCON

PIR1

PIR2

TMR1L

TMR1H

T1CON

TMR2

T2CON

SSPBUF

SSPCON

CCPR1IL

CCPR1H

CCP1CON

RCSTA

TXREG

RCREG

CCPR2L

CCPR2H

CCP2CON

ADRESH

ADCONOD

General
Purpose
Registers

96 bytes

Bank 0

Addr.
80h
81h
82h
83h
84h
85h
86h
87h
88h
89h
AR
8Bh
8Ch
8Dh
8Eh
8Fh
80h
91h
92h
83h
84h
835h
96h
87h
898h
99h
9AhR
9Bh
8Ch
9Dh
9Eh
9Fh
ADh

FFh

Name

INDF

OPTION_REG

PCL

STATUS

FSR

TRISA

TRISB

TRISC

TRISD

TRISE

PCLATH

INTCOM

PIE1

PIE2

PCON

OSCCON

OSCTUNE

SSPCON2

PR2

SSPADD

SSPSTAT

WPUB

IOCB

VRCON

TXSTA

SPERG

SPBERGH

PWM1CON

ECCPAS

PSTRCON

ADRESL

ADCON1

General
Purpose
Registers

80 bytes

Bank 1

Addr.
100h
101h
102h
103h
104h
105h
106h
107h
108h
109h
10Ah
10Bh
10Ch
10Dh
10Eh
10Fh
110h

17Fh

Name

INDF

TMRO

PCL

STATUS

FSR

WDTCON

PORTE

CM1CONOD

CM2CONOD

CM2CONA1

PCLATH

INTCON

EEDAT

EEADR

EEDATH

EEADRH

General
Purpose
Registers

96 bytes

Bank 2

Addr.
180h
181h
182h
183h
184h
185h
186h
187h
188h
1859h
18Ah
18Bh
18Ch
18Dh
18Eh
18Fh
190h

1EFh

Name
INDF

OPTION_REG

PCL

STATUS

FSR

SRCON

TRISB

BAUDCTL

ANSEL

ANSELH

PCLATH

INTCOM

EECONA1

EECON2

Mot Used

Mot Used

General
Purpose
Registers

96 bytes

Bank 3

37

SFRs bank 0

Address | Name Bit7 | Bit6 | Bit5 | Bitd | Bit3 Bit2 Bit1 Bit0
00h INDF | Indirect register
01h TMRO | Timer TO Register
02h PCL |Least Significant Byte of Program Counter
03h | sTaTUS | IRP | RP1 | RPO TO PD z DC C
04h FSR |Indirect Data Memory Address Pointer
05h | PORTA | RA7 RAG RA5 RA4 RA3 RAZ RA1 RAD
06h | PORTB | RB7 RB6 RB5 RB4 RB3 RB2 RB1 RBO
07h | PORTC | RCT RC6 RC5 RC4 RC3 RC2 RC1 RCD
08h | PORTD RD7 RD6 RD5 RD4 RD3 RDZ RD1 RDO
09h | PORTE - - - - RE3 RE2 RE1 RED
0Ah PCLATH - - - Upper 5 bits of Program Counter
0Bh | INTCON | GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
0Ch PIR1 - ADIF RCIF TXIF SSPIF | CCP1F | TMR2IF | TMRI1IF
0Dh PIR2 OSFIF | C2IF C1IF EEIF BCLIF | ULPWUIF - CCP2IF
OEh TMRIL |Least Significant Byte of the 18-bit Timer TMRO
0Fh TMR1H | Most Significant Byte of the 16-bit Timer TMRO
10h | TICON | T1GINV | TMR1GE | TICKPS1 | TICKPSO | TIOSCEN | TISYNC | TMRICS | TMRION
11h TMR2 [Timer T2 Register
12h | T2CON - |TouTtPsa | TouTPS2 | TOUTPS1 | TOUTPSO | TMR2ON |T2CKPS1 | T2CKPSO
13h SSPBUF | Synchronous Serial Port Receive Buffer/Transmit Register
14h | ssPcON | wcoL | sspov | ssPEN | ckP | ssPM3 | ssPMz | SSPM1 | SSPMO
15h CCPRIL |Capture/ComparePWM Register 1 Low Byte (LSB)
16h | CCPR1H |Capture/ComparePWM Register 1 High Byte (LSB)
i7h |cCP1CON| Pim1 PIMO | DC1B1 | DC1BO | CCPIM3 | CCPiM2 | CCPIM1 | CCPiMOD
18h | RCSTA | SPEN RX9 SREN CREN | ADDEN | FERR | OERR | RX9D
18h THXREG |EUSART Transmit Data Register
1Ah RCREG |EUSART Receive Data Register
1Bh | CCPR2L |Capture/Compare PWM Register 1 Low Byte (LSB)
1Ch CCPR2H | Capture/Compare PWM Register 1 High Byte (LSE)
1oh |ccrcon| - | - | pcee1 | pczeo | ccpama | ccpemz | ccrami | ccpzmo
1Eh ADRESH |A/D Result Register High Byte
1Fh | ADCONO | ADCS1 | ADCSO | CHS3 | cHs2 | CHS1 | CHSO |GO/DONE| ADON

38

SFRs bank 1

Address| Name Bit7 | Bt6 | Bits | Bit4a | Bit3 | Bit2 Bit1 Bit0
80h INDF Indirect Register
81h |OPTION REG| RBPU | INTEDG | Tocs | Tose | psa | psz | ps1 | Pso
82h PCL Least Significant Byte of Program Counter
83h STATUS rRr | RP1 | RO | TO | PD | zZ DC c
84h FSR Indirect Data Memory Address Pointer
85h TRISA TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISAD
86h TRISB TRISB7 | TRISBE | TRISBS | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISBO
87h TRISC TRISC7 | TRISC6 | TRISCS | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISCO
8gh TRISD TRISD7 | TRISD6 | TRISDS | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISDO
89h TRISE - - - - TRISE3 | TRISE2 | TRISE1 | TRISED
8Ah PCLATH - - - Upper 5 bits of the Ptogram Counter
88h INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
8Ch PIE1 - ADIE RCIE TXIE SSPIE | CCP1IE | TMR2IE | TMRI1IE
8Dh PIE2 OSFIE C2IE C1IE EEIE BCLIE |ULPWUIE - CCP2IE
8Eh PCON - - ULPWUE | SBOREN - - POR BOR
8Fh OSCCON - IRCF2 | IRCF1 IRCFO | OSTS HTS LTS SCS
90h | OSCTUNE - - - TUN4 | TUN3 | TUN2 | TUN1 | TUND
91h SSPCON2 | GCEN |ACKSTAT | ACKDT | ACKEN | RCEN PEN RSEN | SEN
92h PR2 Timer T2 Period Register
93h SSPADD Synchronous Serial Port (I* C mode) Address Register
93h SSPMSK MSK7 MSKE MSK5 MSK4 | MSK3 | MSK2 | MSK1 | MSKO
9dh SSPSTAT SMP CKE DIA P S RIW UA BF
95h WPUB WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUBO
96h locB IOCB7 | IOCB6 | I0CBS | 10CB4 | 10CB3 | I0CB2 | IOCB1 | IOCBO
97h VRCON VREN VROE VRR VRSS VR3 VR2 VR1 VRO
98h TXSTA CSRC TX9 TXEN SYNC | SENDB | BRGH | TRMT | Tx9D
99h SPBRG BRG7 BRG6 BRG5 BRG4 | BRG3 | BRG2 | BRG1 | BRGO
9Ah SPBRGH BRG15 | BRG14 | BRG13 | BRG12 | BRG11 | BRG10 | BRGZ | BRGB
98h | PWMI1CON | PRSEN | PDC6 PDC5 PDC4 | PDC3 | PDC2 | PDC1 | PDCO
9Ch ECCPAS | ECCPASE| ECCPAS2 | ECCPAS1 |ECCPASO |PSSACT | PSSACO |PSSBD1 |PSSBDO
9Dh | PSTRCON - - - STRSYNC| STRD | STRC | STRB | STRA
9Eh ADRESL A/D Result Register Low Byte
9Fh ADCON1 ADFM - | vere1 | vereo - - - -

39

SFRs bank 2 .

Address | Name Bit7 Bt | Bit5 | B4 | Bit3 Bit2 Bit1 Bit0

100h INDF Indirect register

101h TMRO Timer TO Register

102h PCL Least Significant Byte of the Program Counter

103h STATUS IRP RP1 RPO TO PD i Dc C
104h FSR Indirect Data Memory Address Pointer

105h WDTCON - - - WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN
106h FORTE RBY RB& RBS RB4 RB3 RB2 RB1 RBO
107h | CM1CONO C10N | c1ouT C10E C1POL - CiR C1CH1 C1CHOD
108h | CM2CONO C20N J c20uT C20E C2POL - C2R C2CH1 C2CHOD
108h | CM2CON1 | MC10UT | MC20UT | C1RSEL C2RSEL - - T1GSS C28YNC
10AR PCLATH - - - Upper 5 bits of the Program Counter
10Bh INTCOM GIE PEIE TOIE INTE REBIE TOIF INTF RBEIF
10Ch EEDAT EEDATY | EEDATE | EEDATS EED AT4 EEDATS EEDATZ EEDAT1 EEDATO
10Dh EEADR EEADR7 | EEADRE | EEADRS EEADR4 EEADR3 EEADRZ EEADR1 EEADRO
10Eh EEDATH | - EEDATHS | EEDATH4 EEDATH3 | EEDATHZ | EEDATH1 | EEDATHO
10Fh EEADRH] - - EEADRH4 EEADRH3 | EEADRH2 | EEADRH1 | EEADRHO

SFRs bank 3
Address Name Bit7 | Bit6 | Bits | B4 | Bita | B2 | Bit1 | Bit0

180h INDF Indirect Register

181h | OPTION REG | RBPU |INTEDG | Tocs | TosE | psa | ps2 | Ps1 | pPso
182h PCL Least Significan Byte of the Program Counter

183h STATUS mp | Rt | RP0 | TO | PpD | z | bc | c
184h FSR Indirect Data Memeory Address Pointer

185h SRCON SR1 SRO C1SEM | CZREN | PULSS | PULSR - FVREN
186h TRISB TRISB7 TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISBO
187h BAUDCTL ABDOVF | RCIDL - SCKP | BRG16 - WUE ABDEN
188h ANSEL ANST ANSE ANSS ANS4 | ANS3 ANS2 ANS1 ANSO
189h ANSELH - - ANS13 | ANS12 | ANS11 | ANS10 | ANSS ANSE
194h PCLATH - - - Upper & bits of the Program Counter

19Bh INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
19Ch EECON1 EEPGD - - - WRERR | WREN WR RD
190h EECONZ EEPROM Control Register 2

STACK

A part of RAM used for stack consists of eight iBrbgisters. Before the microcontroller starts to
execute a subroutineCALL instruction) or when an interrupt occurs, the addrof first next
instruction being currently executed is pushed d¢h#&stack, i.e. onto one of its registers. In that
way, upon subroutine or interrupt execution, therogontroller knows from where to continue
regular program execution. This address is cleapash return to the main program because there
is no need to save it any longer, and one locaifdhe stack is automatically available for further
use.

It is important to know that data is always cirelygushed onto the stack. It means that after the
stack has been pushed eight times, the ninth pusiwates the value that was stored with first
push. The tenth push overwrites the second pushsar@h. Data overwritten in this way is not
recoverable. In addition, the programmer canno¢ssthese registers for write or read and there is
no Status bit to indicate stack overflow or staokierflow conditions. For that reason, one should
take a special care of it during program writing.

40

Interrupt System

The first thing that the microcontroller does upam interrupt request arrives is to execute the
current instruction and then stop regular programcetion. Immediately after that, the current

program memory address is automatically pushed thetstack and default address (predefined by

the manufacturer) is written to the program countérat location from where the program
continues execution is called interrupt vector. €wning the PIC16F887 microcontroller, that
address is 0004h. As seen in figure below, thetimetaontaining interrupt vector is passed over
during regular program execution.

Part of the program being activated upon intermgguest arrives is called interrupt routine. Its
first instruction is located at the interrupt vectdow long this subroutine will be and what it il
be like depends on the skills of the programmemwa$i as the interrupt source itself. Some
microcontrollers have more interrupt vectors (eviemgrrupt request has its vector), but in this
case there is only one. Consequently, the firdt glamnterrupt routine consists in interrupt source
recognition.

At last, upon interrupt source is recognized artdriapt routine is executed, the microcontroller
reaches th&ETFI E instruction, pops the address from the stack amtirtues program execution
from where it left off.

1] (2 (3

Instructions Addrosses Instructions Addresses Instructions Addresses
- 00h 00h
o XX hex,
[/5_ Interrupt vecior Ddh * l.& pin
- \
Interrupt i-_ "h'
kS = nﬂ
e 1 | . A g |
i
e -
in
ﬂtﬂ‘# %% f
X freeeen S
............... : B e
. : T e
ek : j{ﬁ;&*‘_
- Lo .8 i~ RETFIE —_—
=
1

How to use SFRs

You have bought the microcontroller and have atgss how to use it...There is a long list of
SFRs with all bits. Each of them controls some essc All in all, it looks like a big control table
with a lot of instruments and switches. Now you @vacerned about whether you will manage to
learn how to use them all? You will probably natf don’t worry, you don’t have to! Who anyway
needs that? Such powerful microcontrollers arelamio the supermarkets: they offer so many
things at low prices and it is only up to you t@oke. Therefore, select the field you are intedeste
in and study only what you need to know. Afterwamdken you completely understand hardware
operation, study SFRs which are in control oftihgre are usually a few of them). At last, during
program writing, prior to change some bit of thesgisters, do not forget to select the appropriate
bank. That is why they are listed in the tablesvabo

41

= ke E@A S E

Chapter 2: Core SFRs

Features and Function
The special function registers can be classifi¢ol two categories:

» Core (CPU) registers - control and monitor operatiad processes in the central processor.
Even though there are only a few of them, the dmeraof the whole microcontroller
depends on their contents.

» Peripheral SFRs- control the operation of periphends (serial communication module,
A/D converter etc.). Each of these registers ishgaipecialized for one circuit and for that
reason they will be described along with the cirthey are in control of.

The core (CPU) registers of the PIC16F887 micraadlet are described in this chapter. Since
their bits control several different circuits withihe chip, it is not possible to classify thenoint
some special group. Because of that, which meatdits are described along with processes they
control.

STATUS Register

RW (0) RIW (0) RIW (0) R (1) R(1) RIW (x) RIW (x) RIW (x) Features
STATUS | IRP | RP1 RPO TO PD z DC C | Bit name
Bit 7 Bite Bit5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0
Legend

RMW Readable/Writable bit
R Readable bit only

(0} After reset, bit is cleared
{1} After reset, bit is set
[x) After reset, bit is unknown

Fig. 2-1 STATUS Register

The STATUS register contains: the arithmetic statuthe W register, the RESET status and the
bank select bits for data memory. One should befabwhen writing some value to this register
because in case of negligence, the results maiffeesdt than expected. For example, if one try to
clear all bits using theLRF STATUS instruction, the result in register will be 000xxlinstead of

the expected 00000000. Such errors occur because bis of this register are set or cleared
according to the hardware as well as because t&l@nd 4 are readable only. For those reasons,
in case it is needed to change its content (fomgte, to change active bank), it is recommended
to use only instructions which do not affect angt&s$ bits (C, DC and Z). Refer to “Instruction Set
Summary”.

IRP - Bit selects register bank. It is used for indiraddressing.

 1-Banks 0 and 1 are active (memory location OBh}F
* 0-Banks 2 and 3 are active (memory location 10BRh)

42

RP1,RPO- Bits select register bank. They are used faradiaddressing.

RP1 RPO Active Bank
0 0 BankO
0 1 Bankl
1 0 Bank2
1 1 Bank3

TO - Time-out bit.

1 - After power-on or after executir@RWDT instruction which resets watch-dog timer or SLEEP
instruction which sets the microcontroller into kmensumption mode.

0 - After watch-dog timer time-out has occurred.

PD - Power-down bit.

1 - After power-on or after executiyRWDT instruction which resets watch-dog timer.

0 - After executing of theLEEP instruction which sets the microcontroller intavli@onsumption
mode.

Z - Zero bit
1 - The result of an arithmetic or logic operatisizero.
0 - The result of an arithmetic or logic operatiswlifferent from zero.

DC - Digit carry/borrow bit is changed during addition and subtractionaee an “overflow” or a
“borrow” of the result occur.

1 - A carry-out from the 4th low-order bit of thesult has occurred.

0 - No carry-out from the 4th low-order bit of tresult has occurred.

C - Carry/Borrow bit is changed during addition and subtractioncase an “overflow” or a
“borrow” of the result occur, i.e. if the resultgseater than 255 or less than 0.

1 - A carry-out from the most significant bit okthesult has occurred.

0 - No carry-out from the most significant bit bktresult has occurred.

OPTION_REG Register

RW (1) RW(1) RW(1) RW(1) RW({1) RW([) RW(1) RW(1) Features
OPTION | RBPU [INTEDG| TOCS | TOSE | PSA PS2 PS1 PS0 | Bit name
Bit7 Bit6 Bit5 Bit 4 Bit3 Bit 2 Bit 1 Bit0

The OPTION_REG register contains various contrés o configure: TimerO/WDT prescaler,
timer TMRO, external interrupt and pull-ups on PGRT

43

Pin RAATOCHIC1OUT

== P R AT ORI 10T

RBPU - Port B Pull up Enable bit.

e 1-Porta B pull-ups are disabled.
0 - Porta B pull-ups are enabled.

INTEDG - Interrupt Edge Select bit.

e 1 - Interrupt on rising edge of RBO/INT pin.
0 - Interrupt on falling edge of RBO/INT pin.

—— Rl

TOCS - TMRO Clock Source Select bit.

* 1 -Timer TMRO uses pulses transition on TOCKI pin

0 - Timer TMRO uses internal instruction cycle msls
(Foscl/4).

TOSE - TMRO Source Edge Select biselects pulse edge

(rising or falling) counted by the timer TMRO thgiu the
RA4/TOCKI pin.

1 - Increment on high-to-low transition on TOCKhpi
0 - Increment on low-to-high transition on TOCKhpi

OPTION_REG

PSA - Prescaler Assignment bitssigns prescaler (only one
exists) to the timer or watchdog timer.

e 1 - Prescaler is assigned to the WDT.
0 - Prescaler is assigned to the TMRO.

44

PS2, PS1, PSO Prescaler Rate Select bits.

Prescaler rate is selected by combining these thiteeBesides, as shown in table below, prescaler
rate prescaler rate depends on whether prescalssigned (TMRO) or watch-dog timer (WDT).

PS2 PS1 PSO TMRO WDT
0 0 0 1:2 1.1
0 0 1 1:4 1.2
0 1 0 1.8 1:4
0 1 1 1:16 1.8
1 0 1 1.64 1:32
1 1 0 1:128 1.64
1 1 1 1:256 1:128

In order to achieve 1:1 prescaler rate when thertiRO counts up pulses, the prescaler should
be assigned to the WDT. In consequence of thattiter TMRO does not use the prescaler, but
directly counts pulses generated by the oscillatbich was the objective!

Interrupt System Registers

When an interrupt request arrives it does not ntkeaninterrupt will automatically occur, because

it must be also enabled by the user (from withia pinogram). Because of that, there are special
bits used to enable or disable interrupts. It syda recognize these bits by IE contained in their
names (stands for Interrupt Enable). Besides, edelrupt is associated with another bit called

flag which indicates that interrupt request hasvad regardless of whether it is enabled or not.
They are also easily recognizable by the last titeds contained in their names- IF (Interrupt

Flag).

As seen, everything is based on a simple and efficdea. When an interrupt request arrives, the
flag bit is to be set first.

Interrupt Fss N E— IEbit Interrupt
> -
request IF bt} | TP
Flag Enabled

Fig. 2-9 Interrupt System Registers

If the appropriate IE bit is not set (0), this ewverll be completely ignored. Otherwise, an intgtru
occurs! In case several interrupt sources are edalilis necessary to detect the active one before
interrupt routine starts execution. Source detaasmerformed by checking flag bits.

It is important to know that flag bits are not auttically cleared, but by software during interrupt
routine execution. If this detail is neglected, theo interrupt will occur immediately upon return

45

to the program, even though there is no more reédae#s execution! Simply, the flag as well as
IE bit remained set. Anyway, there is a big chamicgpending another sleepless night...

All interrupt sources typical of the PIC16F887 rowontroller are shown on the next page. Note
several things:

* GIE bit - enables all unmasked interrupts and disablaatalirupts simultaneously.
* PEIE bit - enables all unmasked peripheral interrupts asabtes all peripheral interrupts
(This does not concern Timer TMRO and port B intptrsources).

To enable interrupt caused by changing logic siatport B, it is necessary to enable it for ea¢h bi
separately. In this case, bits of IECB register have the function to control IE bits.

i SFRs: INTCON, PIE1, PIE2, PIR1, PIR2 and 10CB -

=

USART
receiver

OSCILLATOR gl

o] 8 Pin RBO/INT

ofle
alle
IH
@@
- ||

o
o
-]
o

transmitter

MSSP (SPI, 12C)
Transmission

)
£
o

IOC-RE4

Error

CCP1 module _'_"-_"E“-_‘

Waking up

Timer1 Summe i 7T Tl S (L1
Timer 2 —————»{TMR2IF| > [TMR2IE|

:
#ﬁ Lﬁlnterrupt CPU

Analog : E—_
comparator 2 [1 es TR T e
LU i >

Fig. 2-10 Interrupt SFRs

o
o
]
]
3

INTCON Register

The INTCON register contains various enable ang fias for TMRO register overflow, PORTB
change and external INT pin interrupts.

RIW (0) RIW (0) RIW(0) RW(0) R/W (0) RIW {0) RIW {0} RIW (x) Features
INTCON[GIE | PEIE] TOIE | INTE RBIE | TOIF | INTF RBIF] Bit name
Bit 7 Bit6 Bit5 Bit 4 Bit 3 Bit2 Bit 1 Bit0
Legend

RW ReadableWritable bit
{0} After reset, bit is cleared
[x) After reset, bit is unknown

Fig. 2-11 INTCON Register

GIE - Global Interrupt Enable bit - controls all possible interrupt sources simudtausly.
e 1 - Enables all unmasked interrupts.
* 0 - Disables all interrupts.

PEIE - Peripheral Interrupt Enable bit acts similar to GIE, but controls interrupts erabby
peripherals. It means that it does not affect s triggered by the timer TMRO or by changing
state on port B or RBO/INT pin.

» 1 - Enables all unmasked peripheral interrupts.

* 0 - Disables all peripheral interrupts.

TOIE - TMRO Overflow Interrupt Enable bit controls interrupt enabled by TMRO overflow.
* 1 - Enables the TMRO interrupt.
* 0 - Disables the TMRO interrupt.

INTE - RBO/INT External Interrupt Enable bit controls interrupt caused by changing logic state
on pin RBO/IN (external interrupt).

* 1 - Enables the INT external interrupt.

* 0 - Disables the INT external interrupt.

RBIE - RB Port Change Interrupt Enable bit. When configured as inputs, port B pins may
cause interrupt by changing their logic state (ragten whether it is highto- low transition or vice
versa, fact that something is changed only mattdisijs bit determines whether interrupt is to
occur or not.

* 1 - Enables the port B on change interrupt.

* 0 - Disables the port B on change interrupt.

TOIF - TMRO Overflow Interrupt Flag bit registers the timer TMRO register overflow, when
counting starts from zero.

 1-TMRO register has overflowed (bit must be aelan software).

* 0 - TMRO register has not overflowed.

INTF - RBO/INT External Interrupt Flag bit registers change of logic state on the RBO/pWT.
* 1-The INT external interrupt has occurred (mwestleared in software).
» 0 - The INT external interrupt has not occurred.

a7

RBIF - RB Port Change Interrupt Flag bit registers change of logic state of some port Bitinp
pins.
1 - At least one of the port B general purpose piis has changed state. Upon reading
portB, RBIF (flag bit) must be cleared in software.
* 0 - None of the port B general purpose I/O pinsdiesged state.

48

PIE1 Register

The PIE1 register contains the peripheral interasable bits.

RW() RW{0) RW(0) RW(0) RW(@) RW@ RW({) Features

PIE1| - | ADIE | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | Bit name
Bit7 Bit6 Bit5 Bitd Bit 3 Bit 2 Bit 1 Bit0
Legend

- Unimplemented bit
RW ReadableMritable bit
[[1}] After reset, bit is cleared

Fig. 2-13 PIE1 register

ADIE - A/D Converter Interrupt Enable bit.
* 1 - Enables the ADC interrupt.
* 0 - Disables the ADC interrupt.

RCIE - EUSART Receive Interrupt Enable bit.
* 1 - Enables the EUSART receive interrupt.
* 0 - Disables the EUSART receive interrupt.

TXIE - EUSART Transmit Interrupt Enable bit.
* 1 - Enables the EUSART transmit interrupt.
* 0 - Disables the EUSART transmit interrupt.

SSPIE - Master Synchronous Serial Port (MSSP) Inteupt Enable bit - enables an interrupt
request to be generated upon each data transmigaisgnchronous serial communication module
(SPI1 or 12C mode).

* 1 - Enables the MSSP interrupt.
* 0 - Disables the MSSP interrupt.

CCPL1IE - CCP1 Interrupt Enable bit enables an interrupt request to be generated in1CCP
module used for PWM signal processing.

e 1 - Enables the CCP1 interrupt.

e 0 - Disables the CCP1 interrupt.

TMR2IE - TMR2 to PR2 Match Interrupt Enable bit
* 1 - Enables the TMR2 to PR2 match interrupt.
* 0 - Disables the TMR2 to PR2 match interrupt.

TMRL1IE - TMR1 Overflow Interrupt Enable bit enables an interrupt request to be generated
upon each timer TMRL1 register overflow, i.e. whiea tounting starts from zero.

* 1 - Enables the TMR1 overflow interrupt.

* 0 - Disables the TMR1 overflow interrupt.

49

PIE2 Register

The PIE2 Register also contains the various inpgrenable bits.

RIW (D) RIW (0} RIW (0) RW (D) RIW (0} RW (D)

RIW (D)

PIE2 | OSFIE | C2IE | C1IE | EEIE | BCLIE |[ULPWUIE

Features

CCP2IE | Bit name

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2

Legend

Unimplemented bit
RW Readablefritable bit
(0) After reset, bit is cleared

Fig. 2-15 PIE2 Register

OSFIE - Oscillator Fail Interrupt Enable bit.
* 1 - Enables oscillator fail interrupt.
* 0 - Disables oscillator fail interrupt.

C2IE - Comparator C2 Interrupt Enable bit.
* 1 - Enables Comparator C2 interrupt.
* 0 - Disables Comparator C2 interrupt.

C1IE - Comparator C1 Interrupt Enable bit.
* 1 - Enables Comparator C1 interrupt.
» 0 - Disables Comparator C1 interrupt.

EEIE - EEPROM Write Operation Interrupt Enable bit.
* 1 - Enables EEPROM write operation interrupt.
* 0 - Disables EEPROM write operation interrupt.

BCLIE - Bus Collision Interrupt Enable bit.
* 1 - Enables bus collision interrupt.
* 0 - Disables bus collision interrupt.

ULPWUIE - Ultra Low-Power Wake-up Interrupt Enable bit.
* 1 - Enables Ultra Low-Power Wake-up interrupt.
* 0 - Disables Ultra Low-Power Wake-up interrupt.

CCP2IE - CCP2 Interrupt Enable bit.
* 1 - Enables CCP2 interrupt.
* 0 - Disables CCP2 interrupt.

Bit 1

Bit 0

50

PIR1 Register

The PIR1 register contains the interrupt flag bits.

RIW (0} R (D) R (0} RIW (0) RW (0) RIW (0) RW (0) Features
PIR1| - | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF [TMR1IF | Bit name
Bit T Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit 1 Bit 0
Legend

- Unimplemented bit
R'W Readableritable bit

R Readable kit

{0} After reset, bit is cleared

Fig. 2-17 PIR1 Register

ADIF - A/D Converter Interrupt Flag bit.
» 1- A/D conversion is completed (bit must be cldaresoftware).
0 - A/D conversion is not completed or has nottsthr

RCIF - EUSART Receive Interrupt Flag bit.
 1-The EUSART receive buffer is full. Bit is clearby reading the RCREG register.
 0-The EUSART receive buffer is not full.

TXIF - EUSART Transmit Interrupt Flag bit.
* 1-The EUSART transmit buffer is empty. Bit isaled by writing to the TXREG register.
* 0-The EUSART transmit buffer is full.

SSPIF - Master Synchronous Serial Port (MSSP) Inteupt Flag bit.

e 1 - The MSSP interrupt condition during data traimseceive has occurred. These
conditions differ depending on MSSP operating m@&#l or 12C) This bit must be cleared
in software before returning from the interruptvses routine.

* 0- No MSSP interrupt condition has occurred.

CCPL1IF - CCP1 Interrupt Flag bit.

* 1 - CCP1 interrupt condition has occurred (CCPLlng for capturing, comparing and
generating PWM signal). Depending on operating maag@ture or compare match has
occurred. In both cases, bit must be cleared itwsoé. This bit is not used in PWM mode.

e 0- No CCP1 interrupt condition has occurred.

TMR2IF - Timer2 to PR2 Interrupt Flag bit
* 1 - TMR2 (8-bit register) to PR2 match has occuriguas bit must be cleared in software
before returning from the interrupt service routine
* 0-No TMR2 to PR2 match has occurred.

TMRL1IF - Timerl Overflow Interrupt Flag bit

* 1-The TMRL1 register has overflowed. This bit mustcleared in software.
* 0-The TMR1 register has not overflowed.

51

PIR2 Register

The PIR2 register contains the interrupt flag bits.

R/W (0) RIW (0) RW (D) RW (0) RIW (0) R/W (0) RIW (0) Features
PIR2 | OSFIF | C2IF | C1IF | EEIF | BCLIF |[ULPWUIF[- CCP2IF | Bit name
Bit 7 Bit6 Bit5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0
Legend

- Unimplemented bit
RW Readablefritable bit

R Readable bt

{0} After reset, bit is cleared

Fig. 2-18 PIR2 register

OSFIF - Oscillator Fail Interrupt Flag bit.
» 1 - System oscillator failed and clock input haarged to internal oscillator INTOSC. This
bit must be cleared in software.
* 0 - System oscillator operates normally.

C2IF - Comparator C2 Interrupt Flag bit.
e 1 - Comparator C2 output has changed (bit C2OUHis Bit must be cleared in software.
e 0 - Comparator C2 output has not changed.

C1IF - Comparator C1 Interrupt Flag bit.
e 1 - Comparator C1 output has changed (bit CLOUHis Bit must be cleared in software.
e 0 - Comparator C1 output has not changed.

EEIF - EE Write Operation Interrupt Flag bit.
* 1 - EEPROM write completed. This bit must be cldaresoftware.
* 0 - EEPROM write is not completed or has not sthrte

BCLIF - Bus Collision Interrupt Flag bit.
* 1 - A bus collision has occurred in the MSSP whenfigured for 12C Master mode. This
bit must be cleared in software.
* 0 - No bus collision has occurred.

ULPWUIF - Ultra Low-power Wake-up Interrupt Flag bi t.
* 1 - Wake-up condition has occurred. This bit mestleared in software.
* 0 - No Wake-up condition has occurred.

CCP2IF - CCP2 Interrupt Flag bit.

* 1 - CCP2 interrupt condition has occurred (unit dapturing, comparing and generating
PWM signal). Depending on operating mode, captureompare match has occurred. In
both cases, the bit must be cleared in softwars. @ihis not used in PWM mode.

* 0-No CCP2 interrupt condition has occurred.

52

PCON register

The PCON register contains only two flag bits usedlifferentiate between a: power-on reset,
brown-out reset, Watchdog Timer Reset and exteasat (through MCLR pin).

RW (0) RW (1) RIW (D) RIW (x) Features
PCON|[- | - Jupwue[sBorReN] - | - [Por | BOR | Bitname
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

Legend

- Unimplementead bit
RW ReadableWritable bit
(D) After reset, bit is cleared

Fig. 2-21 PCON register

ULPWUE - Ultra Low-Power Wake-up Enable bit
e 1 - Ultra Low-Power Wake-up enabled.
* 0 - Ultra Low-Power Wake-up disabled.

SBOREN - Software BOR Enable bit
1 - Brown-out Reset enabled.
* 0 - Brown-out Reset disabled.

POR - Power-on Reset Status bit
« 1 - No Power-on reset has occurred.
« 0 - Power-on reset has occurred. This bit mustdbenssoftware after a Power-on Reset
occurs.

BOR - Brown-out Reset Status bit
« 1 - No Brown-out reset has occurred.
* 0 - Brown-out reset has occurred. This bit musséitein software after a Brown-out Reset
occurs.

PCL and PCLATH Registers

The size of program memory of PIC16F887 is 8K. €fme, it has 8192 locations for program
storing. For that reason the program counter mest3bits wide (2°13 = 8192). In order that the
contents of some location may be changed in softveluring operation, its address must be
accessible through some SFR. Since all SFRs aitev8de, this register is “artificially” created by
dividing its 13 bits into two independent registd?d€LATH and PCL.

If the program execution does not affect progranmeer, the value of this register is automatically

and constantly incremented +1, +1, +1, +1... Irt thay, the program is executed just as it is
writen- instruction by instruction, followed by cstant address increment.

53

Bit12 Bit11 Bit10 Bit% Bit8 Bit7T Bité Bit5 Bitd Bitl Bit2 Bit1 Bit 0

Program Counter (PC) [N &t 4 | Bit 3|Bit 2| Bit 1]Bit 0 || Bit 7|Bit 6] Bit 5| Bit 4| Bit 3| Bit 2| Bit 1]Bit 0|

"

PCLATH PCL
Fig. 2-23 PCL and PCLATH Registers

If the program counter is changed in software, ttieme are several things that should be kept in
mind in order to avoid troubles:

Eight lower bits (the low byte) come from the PQgister which is readable and writable,
whereas five upper bits coming from the PCLATH ségji are writable only.

The PCLATH register is cleared on any reset.

In assembly language, the value of the program teoust marked with PCL, but it obviously
refers to 8 lower bits only. One should take cafeth@t when using the AbDW PCL”
instruction. This is a jump instruction which sges the target location by adding some
number to the current address. It is often usetheroccasion of jumping into a look-up table
or program branch table to read them. A problerseariif the current address is such that
addition causes change on some bit belonging tditjieer byte of the PCLATH register. Do
you see what is going on?

Executing any instruction upon the PCL registerwiameously causes the Prog ram Counter
bits to be replaced by the contents of the PCLAEHigter. However, the PCL register has
access to only 8 lower bits of the instruction leand the following jump will be completely
incorrect. The problem is solved by setting sucdtructions at addresses ending by xx00h.
This enables program to jump up to 255 locatiohdomger jumps are executed by this
instruction, the PCLATH register must be incremdriig 1 for each PCL register overflow.

On subroutine call or jump execution (instructi@aasL andGoTo), the microcontroller is able
to provide only 11-bit address. For that reasomjlar to RAM which is divided in “banks”,
ROM is divided in four “pages” in size of 2K ea@uch instructions are executed within these
pages without any prob lem. Simply, since the pscoeis provided with 11-bit address from
the program, it is able to address any locatioriwit2KB. Figure below illustrates this
situation as a jump to the subroutine PP1 address.

However, if a subroutine or jump address are nohiwithe same page as the location from

where the jump is called , two “missing”- highetsbshould be provided by writing to the
PCLATH register. It is illustrated in figure belaas a jump to the subroutine PP2 address.

54

PCLATH 4,3: 00 01 10 11

P ————

.1.------------------------------

et (GOTO) 25,

Instructions:
RETURN, EETLW or RETFIE

Fig. 2-24 PCLATH Registers

In both cases, when the subroutine reaches IN&N$EGETURN, RETLWOr RETFI E (to return to the
main program), the microcontroller will simply canie program execution from where it left off
because the return address is pushed and savetherdtack which, as mentioned, consists of 13-
bit registers.

Indirect addressing

In addition to direct addressing which is logicaldaclear by itself (it is sufficient to specify
address of some register to read its contents3, rthcrocontroller is able to perform indirect
addressing by means of the INDF and FSR regidtesemetimes considerably facilitates program
writing. The whole procedure is enabled becauséNDé¥- register is not true one (physically does
not exist), but only specifies the register whoddrass is located in the FSR register. Because of
that, write or read from the INDF register actuathgans write or read from the register whose
address is located in the FSR register. In othedsyaegisters’ addresses are specified in the FSR
register, and their contents are stored in the INBgister. The difference between direct and
indirect addressing is illustrated in the figurdove

55

As seen, the problem with “missing addressing bhgsSolved by “borrow” from another register.
This time, it is the seventh bit called IRP frone ®TATUS register.

Direct addressing Indirect addressing
EE 5 413|2|1|0|STATUS register STATUS register TE 5|4(3[2(1(0
v v
RPIRP0 6 [nstruction 0 IRF 7 FSRregister 0
+ BT
_i. A4 > A
Bank Address
\ > 00 01 10 1
| : 180
S
Content
INDF register
Content
—— [
TFh FFh 17Fh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3

Fig. 2-25 Direct and Indirect addressing

56

Chapter 3: 1/0 Ports

Features and Function

One of the most important feature of the microcalier is a number of input/output pins used for
connection with peripherals. In this case, theeeiartotal of thirty-five general purpose /O pins
available, which is quite enough for the most aggtions.

In order pins’ operation can match internal 8-lbgamization, all of them are, similar to registers,
grouped into five so called ports denoted by ACBD and E. All of them have several features in
common:

» For practical reasons, many I/O pins have two medhunctions. In case any of these alternate
functions is currently active, that pin may not sltaneous ly use as a general purpose
input/output pin.

» Every port has its “satellite”, i.e. the correspmgdTRIS register: TRISA, TRISB, TRISC etc.
which determines performance, but not the contefntise port bits.

By clearing some bit of the TRIS register (bit=0)e corresponding port pin is configured as
output. Similarly, by setting some bit of the TRi&ister (bit=1), the corresponding port pin is
configured as input. This rule is easy to remenf@berOutput, 1 = Input.

MICROCONTROLLER

| S Pins

Fig. 3-1 1/O Ports

57

Port A and TRISA Register

Port A is an 8-bit wide, bidirectional port. Bitéthe TRISA and ANSEL control the PORTA pins.
All portA pins act as digital inputs/outputs. Bessd five of them can also be analog inputs
(denoted as AN):

| RA7 | RA6 | RA5S | RA4 | RA3 | RA2 | RA1 | RAD |

Legend

RW Readable/Writable bit
(x) After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-2 Port A and TRISA Register

Similar to bits of the TRISA register which determaiwhich of the pins will be configured as input
and which as output, the appropriate bits of theSEN register determine whether the pins will
act as analog inputs or digital inputs/outputs.

* RAO = ANO (determined by bit ANSO of the ANSEL rstgir)
* RAL = AN1 (determined by bit ANS1 of the ANSEL rstgir)
* RA2 = AN2 (determined by bit ANS2 of the ANSEL rstgir)
* RAS3 = AN3 (determined by bit ANS3 of the ANSEL rstgir)
* RA5 = AN4 (determined by bit ANS4 of the ANSEL rstgir)

Each bit of this port has an additional functiofated to some of built-in peripheral units. These
additional functions will be described in later ptexs. This chapter covers only the RAO pin’s
additional function since it is related to port Aly It is about the ULPWU unit.

ULPWU Unit

The microcontroller is commonly used in devices aithihave to operate periodically and,

completely independently using battery power suplplysuch cases, minimal power consumption
is one of the priorities. Typical examples of sugiplication are: thermometers, sensors for fire
detection and similar. It is known that a reduction clock frequency reduces the power

consumption, so one of the most convenient solubiorthis problem is to slow clock down (use

32KHz quartz crystal instead of 20MHz).

58

Setting the microcontroller to sleep mode is anothe
step in the same direction. However, even in case
both measures are applied, another problem atises
is about how to the microcontroller and set it to
normal mode. It is obviously necessary to have
external signal to change logic state on someef th
pins. Thus, the problem still exists... This sigmaist
be generated by additional electronics, which caust
higher power consumption of entire device...

Microcontroller

The ideal solution would be the microcontroller
wakes up periodically by itself, which is not
impossible at all. The circuit which enables tlsat i
shown in figure on the left.

The principle of operation is simple:

A pin is configured as output and logic one (1brisught to it. That causes capacitor to be charged.
Immediately after that, the same pin is configuasdnput. The change of logic state enables an
interrupt and the microcontroller is set3teepmode. Afterwards, there is nothing else to be done
except for waiting for the capacitor to be discleardpy the leakage current flowing out through
input pin. When it occurs, an interrupt takes pland the microcontroller continues with program
execution in normal mode. The whole sequence isategl...

At first sight, this is a perfect solution. Only
at first sight...The problem is that all pins

able to cause interrupt in this way are digit CPU

and have relatively large leakage current

when their voltage is not close to the limit T Interrupt
values Vdd (1) or Vss (0). In this case, the

capacitor is discharged for a short time sin

the current amounts to several hundreds o 200R _T
microamperes. That is why the ULPWU — RAD

circuit able to register slow voltage drop inF L
with ultra low power consumption is I
designed. Its output generates interrupt,

while its input is connected to one of the
microcontroller pins. You guess, it is the RAO gReferring to schematic (R=200 ohms, C=1nF),
discharge time is approximately 30mS, while thaltoonsumption of the microcontroller is 1000
times lower (several hundreds of nanoamperes).

PIC16F88T

59

Port B and TRISB register

Port B is an 8-bit wide, bidirectional port. Bit§the TRISB register determine the function of its
pins.

| RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RBO |

Legend

Bit is unimplemeanted
RW Readable/Writable bit
(x) After reset, bit is unknown
{1} After reset, bit is set

Fig. 3-5 Port B and TRISB register

Similar to port A, a logic one (1) in the TRISB r&tgr configures the appropriate port pin as input
and vice versa. Besides, six pins on this port @enas analog inputs (AN). The bits of the
ANSELH register determine whether these pins aenatog inputs or digital inputs/outputs:

* RBO = AN12 (determined by bit ANS12 of the ANSELe&prster)
* RB1 = AN10 (determined by bit ANS10 of the ANSELe&prster)
* RB2 = AN8 (determined by bit ANS8 of the ANSELH itgr)
* RB3 = AN9 (determined by bit ANS9 of the ANSELH r&tgr)
* RB4 = AN11 (determined by bit ANS11 of the ANSEL&trster)
* RB5 = AN13 (determined by bit ANS13 of the ANSEL&rster)

Each port B pin has an additional function relatedome of built in peripheral units, which will
be explained in later chapters.

* All the port pins have built ipull-up resistor, which make them ideal for connectiornhi®
push-buttons (keyboard), switches and optocouplerstder to connect these resistors to the
microcontroller ports, the appropriate bit of thé\dB register should be set.*

|WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUBO |

Legend

RW Readable/Writable bit
{1 After reset, bit is set

Fig. 3-6 WPUB register

60

Having a high level of resistance (several tenkilofohms), these “virtual” resistors do not affect

pins configured as outputs, but serves as an useimplement to inputs. As such, they are
connected to CMOS logic circuits’ inputs. Otherwigey would act as if they are floating because
of their high input resistance.

Pin with pull-up resistor Pin without pull-up resistor
—_ - T T
WEE

% Digital input Digital output

/’ﬁ_ﬂ_‘-‘-‘\—-__../ m
MCU MCU

Fig. 3-7 Pull-up resistors

* Apart from the bits of the WPUB register, thei® another bit affecting pull-up resistor
installation. It is RBPU bit of the OPTION_REG.idt a general-purpose bit because it affects
installation of all port resistors.

» If enabled, each port B bit configured as input ncayse an interrupt by change ing its
logic state. In order to enable pins to cause &rrumpt, the appropriate bit of the IOCB
register should be set.

| I0CB7 | 10CB6 | I0CB5 | IOCB4 | I0CB3 | 10CB2 | IOCB1 | 10CBO

Legend

RW Readable/Writable bit
(D) After reset, bit is cleared

Fig. 3-8 IOCB register
Because of these features, the port B pins are @oiynused for checking push-buttons on the

keyboard because they unerringly register any hyttess. Therefore, there is no need to “scan”
these inputs all the time.

61

— L 1K

RBO ¢ —
n I S Eg
RB1 T T — >lalo
n PA A LA
RB2 Tt #]0] -
» WA K A x
RB3 T T —¢
=S A A A
X 1 d
L
y II1|‘I
l: n m
7 1

Fig. 3-9 Keyboard Example

When the X, Y and Z pins are configured as outpatgo logic one (1), it is only necessary to wait
for interrupt request which arrives upon any butpoess. By combining zeros and units on these
outputs it is checked which push-button is pressed.

Pin RBO/INT

The RBO/INT pin is a single “true” external inteptusource. It can be configured to react to signal
raising edge (zero-to-one transition) or signalirfgledge (one-to-zero transition). The INTEDG
bit of the OPTION_REG register selects signal.

RB6 and RB7 pins

You have probably noticed that PIC16F887 microaul®r does not have any special pins for
programming (writing program to ROM). Because tlet$ pins available as general purpose 1/0
pins during normal operation are used for that #ctually about port B pins used for clock (RB6)
and data (RB7) transfer during program loadingaddition, it is necessary to apply power supply
voltage Vvdd (5V) and Vss (0V) as well as voltage FbASH memory programming Vpp (12-
14V). During programming, Vpp voltage is appliedthe MCLR pin. All details concerning this
process as well as which one of these voltaggspbeal first are beside the point. The programmer
electronics is in charge of that. The point is {hratgram can be loaded to the microcontroller even
upon it is soldered in the target device. Normathg loaded program can be also changed in the
same way. This function is called ICSP (In-CircBdrial Programming). It is necessary to plan
ahead when using it.

62

It is not complicated at all! It is only necess#&rynstall 4-pin connector in the target devicelsat
necessary programmer voltages may be applied tamibeocontroller. In case these voltages
interfere with other device electronics, take caféoreaking this connection (using resistors or
jumpers).

PIC16Fa8T === PIC16Fa8T

Concerning programmer, these voltages are apmieddtket pins in which the microcontroller is
to be placed.

Port C and TRISC Register
Port C is an 8-bit wide, bidirectional port. Bitsthe TRISC register determine the function of its

pins. Similar to other ports, a logic one (1) ire tARISC register configures the appropriate port
pin as input.

| Rc7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RCO

Legend

RW ReadableVritable bit
(x) After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-12 Port C and TRISC Register

All additional functions of this port bits will bexplained later.

63

Port D and TRISD Register

Port D is an 8-bit wide, bidirectional port. Bittbe TRISD register determine the function of its
pins. A logic one (1) in the TRISD register configs the appropriate port pin as input.

| RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RDO |

Legend

RW Readable/Writable bit
(x) After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-13 Port D and TRISD Register

Port E and TRISE Register

Port E is a 4-bit wide, bidirectional port. The B register’s bits determine the function of its
pins. Similar to other ports, a logic one (1) ie fhRISE register configures the appropriate port
pin as input. The exception is RE3 which is inpuiyand its TRIS bit is always read as ‘1.

- | - | - [- | RE3S | RE2 | RE1 | RE0 |

- | - | - | - |TRISE3|TRISE2 | TRISE1 | TRISEO

Legend

- Bit is unimplemented
RMW Readable/Writable bit

R Readable bit

(x) After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-14 Port E and TRISE Register

Similar to ports A and B, three pins can be configuas analog inputs in this case. The ANSELH
register bits determine whether a pin will act aalag input (AN) or digital input/output:

* REO = AN5 (determined by bit ANS5 of the ANSELrdgr3
* REL1 = AN6 (determined by bit ANS6 of the ANSELrdgr3
* RE2 = AN7 (determined by bit ANS7 of the ANSELrdgr3

64

ANSEL and ANSELH Registers

The ANSEL and ANSELH registers are used to conéghe input mode of an I/O pin to analog
or digital.

| ANS7 | ANS6 | ANS5 | ANS4 | ANS3 | ANS2 | ANS1 | ANSO |

|- | - | ANS13 | ANS12 | ANS11 | ANS10 | ANS9 | ANSS8 |

Legend

Bit is unimplemented
RW Readable/Writable bit
(1) After reset, bit is set

Fig. 3-15 ANSEL and ANSELH Registers

The rule is:

To configure a pin as analog input, the appropigtef the ANSEL or ANSELH registers must

be set (1). To configure pin as digital input/odtghe appropriate bit must be cleared (0).

The state of the ANSEL bits do not affect on digdatput functions. Besides, the result of any
attempt to read some port pin configured as analogt will be 0.

[

=
<o

-
A
w

Fig. 3-16 ANSEL and ANSELH Configuration

65

In Short:

You will probably never write some program whichedmot use ports so the effort you make to
understand their operation will surely pay off. Hwer, they are probably the simplest modules
within the microcontroller. This is how they areeds

When designing a device, select port through wthiehmicrocontroller will communicate to
peripheral environment. If you use only digital unp'outputs, select any port you want. If
you use some of analog inputs, select some of ¢his gupporting such pins configuration
(ANO-AN13).

Each port pin may be configured as input or outpitis of the TRISA, TRISB, TRISC,
TRISD and TRISE registers determine how the appatgmports pins- PORTA, PORTB,
PORTC, PORTD and PORTE will act. Simply...

If you use some of analog inputs, set the apprtgpits of the ANSEL and ANSELH
registers at the beginning of the program.

If you use switches and push-buttons as input sigoarce, connect them to port B pins
because they have pull-up resistors. The use eétresistors is enabled by the RBPU bit of
the OPTION_REG register, whereas the installatibmaividual resistors is enabled by bits
of the WPUB register.

It is usually necessary to react as soon as inpgt ghange their logic state. How ever, it is
not necessary to write a program for changing pogt state. It is far simpler to connect
such inputs to the PORTB pins and enable interampevery voltage change. Bits of the
registers IOCOB and INTCON are in charge of that.

66

Chapter 4: Timers

The timers of PIC16F887 microcontroller may be fiyidescribed in only one sentence. There are
three completely independent timers/counters masase@MR0O, TMR1 and TMR2. But that’s not
all so simple...

Timer TMRO

The timer TMRO has a wide range of applicationpriactice. Only few programs do not use it in
some way. Even simple, it is very convenient argy ¢a use for writing program or subroutine for
generating pulses of arbitrary duration, time mes®ent or counting external pulses (events)
almost with no limitations.

The timer TMRO module is an 8-bit timer/counterhwilhe following features:

e 8-bit timer/counter register

» 8-bit prescaler (shared with Watchdog timer)

* Programmable internal or external clock source
e Interrupt on overflow

* Programmable external clock edge selection

Figure below represents the timer TMRO schematib all bits which determine its operation.
These bits are stored in the OPTION_REG register.

i ignment:
election Pres-:a_rs.r ass
‘T‘:dci:nter 1 - assigned to WDT

0 = timer PSA E 4— (- assigned to timer or counter

Edge selection o :
1 = raising edge I’_ -"! I
0 = falling edgs hd 2 Watch-dog timer

|
I

E -' N |
TOS i :

= PS2, PS1, PSO

Bits fm] prescaler rate selection

L| e (1111 | === TMROIF
Counter (timer) Interrupt flag
8-bit register

Pin RA4/TOCK
Signal external source
Fig. 4-1 Timer TMRO

67

OPTION_REG Register

| RBPU_|INTEDG | T0CS | TOSE | PSA | PS2 | PS1 | PSO |

Legend

RW Readable/Writable bit
(1) After reset, bit is set

Fig. 4-2 OPTION_REG Regjister

RBPU - PORTB Pull-up enable bit
* 1-PORTB pull-up resistors are disabled.
e 2 -PORTB pins can be connected to pull-up resstor

INTEDG - Interrupt Edge Select bit
* 1 - Interrupt on rising edge of INT pin (0-1).
* 2 - Interrupt on falling edge of INT pin (1-0).

TOCS - TMRO Clock Select bit
e 1 -Pulses are brought to TMRO timer/counter irthtugh the RA4 pin.
« 2 -Internal cycle clock (Fosc/4).

TOSE - TMRO Source Edge Select bit
e 1 - Increment on high-to-low transition on TMRO pin
e 2 - Increment on low-to-high transition on TMRO pin

PSA - Prescaler Assignment bit
e 1 -Prescaler is assigned to the WDT.
e 2 -Prescaler is assigned to the TMRO timer/counter

PS2, PS1, PSO - Prescaler Rate Select bit
* Prescaler rate is adjusted by combining these bits.
As seen in the table, the same combination of Qites different prescaler rate for
the timer/counter and watch-dog timer respectively.

PS2 PS1 PSO TMRO WDT
0 0 0 1.2 1.1
0 0 1 1:4 1.2
0 1 0 1:8 1:4
0 1 1 1:16 1.8
1 0 0 1.32 1:16
1 0 1 1.64 1:32
1 1 0 1:128 1:64
1 1 1 1:256 1:128

68

The function of the PSA bit is shown in figuresdvel

PSA n
y i
o]
.
o
=
B
Prescaler I
PS2, PS1, PSO
'I'HI!I)IF'
PSA l
v 1
(%]
=
3
< ToCS a
o

Prescaler

PS2, PS1, PSO

Fig. 4-4 The function of the PSA bit 1

As seen, the logic state of the PSA bit determimbsther the prescaler is to be assigned to the
timer/counter or watch-dog timer.

69

In addition to above mentioned, this is also usefldnow:

* When the prescaler is assigned to the timer/copatsrwrite to the TMRO register will clear
the prescaler.

* When the prescaler is assigned to watch-dog tiamé€] RWDT instruction will clear both
the prescaler and WDT.

* When writing to the TMRO register used as a tinngll, not cause the pulse counting to start
immediately, but with two instruction cycles deldy.accordance to that, it is necessary to
adjust the value written to the TMRO register.

* When the microcontroller is setup in sleep mode dascillator is turned off. Overflow cannot
occur since there are no pulses to count. Thathis the TMRO overflow interrupt cannot
wake up the processor from Sleep mode.

* When used as external clock counter without prescal minimal pulse length or a pause
between two pulses must be 2 Tosc + 20 nS. Tassciflator signal period.

e When used as external clock counter with prescaeminimal pulse length or a pause
between two pulses is 10nS.

» 8-bit prescaler register is not available to therusshich means that it cannot be directly read
or written.

* When changing the prescaler assignment from the OM&R the watch-dog timer, the
following instruction sequence must be executearder to avoid reset:

BANKSEL TMRO
CLRWDT ;CLEAR WDT
CLRF TMRO ;CLEAR TMRO AND PRESCALER

BANKSEL OPTION_REG

BSF OPTION_REG,PSA ;PRESCALER IS ASSIGNED TOETWDT
CLRWDT ;CLEAR WDT

MOVLW b’'11111000° ;SELECT BITS PS2,PS1,PS0O ANDEAR
ANDWF OPTION_REG,W ;THEM BY INSTRUCTION “LOGICA AND”
IORLW b’00000101" ;BITS PS2, PS1, AND PSO SET

MOVWF OPTION_REG ;PRESCALER RATE TO 1:32

e Otherwise, when changing the prescaler assignmemh the WDT to the TMRO, the
following instruction sequence must be executed:

BANKSEL TMRO

CLRWDT ;CLEAR WDT AND PRESCALER

BANKSEL OPTION_REG

MOVLW b'11110000° ;SELECT ONLY BITS PSA,PS2,P8S0

ANDWF OPTION_REG,W ;CLEAR THEM AFTERWARDS BY IBITRUCTION
“LOGICAL AND”

IORLW b’00000011" ;PRESCALER RATE IS 1:16

MOVWF OPTION_REG

70

In order to use TMRO properly, it is necessary:

To select mode:

* Timer mode is selected by the TOCS bit of the ORNIREG register, (TOCS: O=timer,
1=counter).

* When used, the prescaler should be assigned tiintbe/counter by clearing the PSA bit of
the OPTION_REG register. The prescaler rate idvgaising the PS2-PSO0 bits of the same
register.

* When using interrupt, the GIE and TMROIE bits af tNTCON register should be set.

To measure time:
* Reset the TMRO register or write some well-knowlugdo it.
« Elapsed time (in microseconds when using quartz ZMsimeasured by reading the TMRO
register.
» The flag bit TMROIF of the INTCON register is autatically set every time the TMRO
register overflows. If enabled, an interrupt occurs

To count pulses:
* The polarity of pulses are to be counted is seteotethe RA4 pin are selected by the TOSE
bit of the OPTION register (TOSE: O=positive, 1=atge pulses).
* Number of pulses may be read from the TMRO regidtee prescaler and interrupt are used
in the same way as in timer mode.

Timer TMR1

Timer TMR1 module is a 16-bit timer/counter, whialeans that it consists of two registers
(TMR1L and TMR1H). Because of that, it can counta®535 pulses in a single cycle, i.e. before
the counting starts from zero.

16-bit counter register
A

e,

TMR1H Register TMR1L Regiser
e & ~ g \
- - - — — — — — EEAEEEEEEEEEEEEE
bit 15 bit8 bit7 bit 0

Fig. 4-5 Timer TMR1

Similar to the timer TMRO, these registers candsdror written at any moment. In case overflow
occurs, an interrupt is generated.

The timer TMR1 module may operate in one of twoidbasodes- as a timer or a counter.
However, unlike the timer TMRO, each of these meduilas additional functions.

71

Bits of the TLCON register are in control of theeogdion of the timer TMR1.

T10SCEN E TMR1CS E T18YNC H TMR1ON

g Il s IR i ; > |
ar i i | : :
U P ’ | L
; ; L“ Prescaler o
Z " 1,2,4,8 2 re——— ™ o TMR1H | TMRIL
= b iT10SC j T T
cE ! MR
o] — TICKPSO '
o L — TICKPS1 5
F t B
Osc S u
=
=

TMRIIF

TMR1GE H

Pin
TIG

Fig. 4-6 Timer TMR1 Overview
Timer TMR1 Prescaler

Timer TMR1 has an completely separate prescalectwdliows 1, 2, 4 or 8 divisions of the clock
input. The prescaler is not directly readable ortabie. However, the prescaler counter is
automatically cleared upon write to the TMR1H or RI register.

Timer TMR1 Oscillator

RCO/T10S0O and RC1/T10SI pins are used to registlsep coming from peripheral electronics,
but also have additional function. As seen in feguhey are simultaneously configured as both
input (pin RC1) and output (pin RCO) of the addiibLP quartz oscillator (low power).

This additional circuit is primarily designed foperating at low frequencies (up to 200 KHz),
more precisely, for using 32,768 KHz quartz cryslich crystal is used in quartz watches
because it is easy to obtain one-second-long pbisesnple dividing this frequency.

Since this oscillator does not depend on intert@dks it can operate even sleepmode. It is
enabled by setting the TLOSCEN control bit of tHECON register. The user must provide a
software time delay (a few milliseconds) to enqun@per oscillator start-up.

i PiCiEFaET
! 1
\

|
Table below shows recommended values of capacharhws lu' iz ey ;
along with quartz part of the oscillator. Theseuesl do not have - —
to be exact. However, the general rule is: the dnglapacitor 42 768 kiz

capacity the higher stability, which at the sameetprolongs 4||:||_1

time needed for the stabilization of oscillator !
1 cz

15 - 33pF 15 - 33pF
sl GND

Timer TMR1 Gate

Timer 1 gate source is software configurable taH#geT1G pin or the output of comparator C2.
This gate allows the timer to directly time extdraaents using the logic state on the T1G pin or
analog events using the comparator C2 output. Refdigure above. In order to time a signal

duration it is sufficient to enable such gate andnt pulses having passed through it.

TMRL1 in timer mode

In order to select this mode, it is necessary éarcthe TMR1CS bit. After that, the 16-bit register
will be incremented on every pulse coming from theernal oscillator. In case 4MHz quartz

crystal is in use, it will be incremented every rogecond.

In this mode, the TISYNC bit does not affect thmeti because it counts internal clock pulses.
Since the whole electronics uses these pulseg th@o need for synchronization.

TMR1CS B TMR10ON l

i Pulses to count |

% LE—E— TMR1H | TMR1L
E"a

[TMR1®)
|5

Prescaler
1,2,4,8

T1CKPS0 f :
T1CKPS1 GATE

Os

0
INTERRUPT

I_

TMR1IF

Fig. 4-8 TMR1 in timer mode

The microcontroller’s clock oscillator does not rdaring sleep mode so the timer register
overflow cannot cause any interrupt.

Timer TMR1 Oscillator

The power consumption of microcontroller is redutethe lowest level ilsleepmode. The point
is to stop oscillator. Anyway, it is easy to set thmer in this mode- by writing SLEEP instruction
to the program. A problem occurs when it is neagssa wake up the microcontroller because
only interrupt can do that. Since the microconéwolisleeps”, an interrupt must be triggered by
external electronics. All gets incredibly compleatif it is necessary the ‘wake up’ occurs at
regular time intervals...

73

T10SCEN ' TMRICS n T15YNGE

. L Prescaler

1,2,4,8

E ______ _____JE T10S8C Synchronization
E .
“a |: T1CKPS0

e T1CKPS1

'_

v,
|
\ 4

Fig. 4-9 Timer TMR1 Oscillator

In order to solve this problem, a completely indegentLow Powerquartz oscillator able to
operate irsleep modés built in the PIC16F887 microcontroller. Simplyhat previously has been
separate circuit, it is now built in the microcaler and assigned to the timer TMR1. The
oscillator is enabled by setting the TLOSCEN bithef TLCON register. After that, the TMR1CS
bit of the same register is used to determine tthattimer TMR1 uses pulse sequence from that
oscillator. Further procedure depends on the usee€sls.

e The signal from this quartz oscillator is synchemu with the microcontroller clock by
clearing the TLISYNC bit. In that case, the timemnra# operate in sleep mode. You wonder
why? Because the circuit for synchronization ukesctock of microcontroller!

 The TMRL1 register overflow interrupt may be enabl8dch interrupt will occur in sleep
mode as well.

TMR1 in counter mode

Timer TMR1 starts to operate as a counter by gettie TMR1CS bit. It means that the timer
TMR1 is incremented on the rising edge of the ewkclock input TLCKI. Besides, if control bit

T1SYNC of the TLCON register is cleared, the exdeahock inputs will be synchronized on their
way to the TMRL1 register. In other words, the tifi&R1 is synchronized to the microcontroller
system clock and called a synchronous counterfibrere

When the microcontroller ,operating in this wayset insleepmode, the TMR1H and TMR1L
timer registers are not incremented even thougbkgimlses appear on input pins. Simply, since
the microcontroller system clock does not run iis thhode, there are no clock inputs to use for
synchronization. However, the prescaler will conérto run if there are clock pulses on the pins
since it is just a simple frequency divider.

74

TMR“JIH'

Pulses to count

Fin
T1 051

1
:
v
X

Prescaler
1, 2,4, 8

r T1CKPS0
4 T1CKPS1

Pin
TIOSQTICKI
1

e

—

o

W

o)

ol

INTERRUPT

TMRIIF

Fig. 4-10 TMR1 in counter mode

TI1CKI =1

This counter registers a logic one
(1) on input pins. It is important to
G G @ @ know that at least one falling edge
must be registered prior to the first
increment on rising edge. Refer to
figure on the left. The arrows in
o s O 3 figure denote counter increments.

TICKI=0

Counter on

T1CON Register

Legend

RW Readable/Writable bits
(0} After reset, bit is cleared

Fig. 4-12 T1CON Reqgister

T1GINV - Timerl Gate Invert bit acts as logic state itmeon the T1G pin gate or the comparator
C2 output (C20UT) gate. It enables the timer to swga time while gate is high or low.

* 1 -Timer 1 counts when the pin T1G or bit C20UTega high (1).

* 0-Timer 1 counts when the pin T1G or bit C20U7Tega low (0).

TMR1GE - Timerl Gate Enable bit determines whether te TdiG or comparator C2 output
(C20UT) gate will be active or not. This bit is fiional only in case the timer TMRL1 is on (bit
TMR1ON = 1). Otherwise, this bit is ignored.

e 1 Timer TMR1 is on only if timer 1 gate is not a€ti

* 0 Gate does not affect the timer TMRL1.

75

T1CKPS1, T1CKPSO- Timerl Input Clock Prescale Select bits deteenmate of the prescaler
assigned to the timer TMR1.

T1CKPS1 T1CKPSO Prescaler Rate
0 0 1:1
0 1 1:2
1 0 14
1 1 1.8

T1OSCEN - LP Oscillator Enable Control bit
e 1 - LP oscillator is enabled for timer TMR1 cloabsg€illator with low power consumption
and frequency 32.768 kHz).
* 0 - LP oscillator is off.

T1SYNC - Timerl External Clock Input Synchronization Qohtit enables synchronization of
the LP oscillator input or T1CKI pin input with tmeicrocontroller internal clock. When counting
pulses from the local clock source (bit TMR1CS #tBis bit is ignored.

* 1 - Do not synchronize external clock input.

* 0 - Synchronize external clock input.

TMR1CS - Timer TMR1 Clock Source Select bit
e 1 - Counts pulses on the T1CKI pin (on the risidge0-1)
* 0 - Counts pulses of the internal clock of micrdcolter.

TMR1ON - Timerl On bit
e 1 -Enables Timer TMR1.
e 0 - Stops Timer TMRL1.

In order to use the timer TMRL1 properly, it is nesary to perform the following:

e Since it is not possible to turn off the prescaley,rate should be adjusted by using bits
T1CKPS1 and T1CKPSO of the register TLCON (Refehéatable).

» After that, the mode should be selected by the TRIRDit of the same register (TMR1CS:
0= the clock source is quartz oscillator, 1= thecklsource is supplied externally).

* By setting the TLOSCEN bit of the same registee, tiimer TMR1 is turned on and the
TMR1H and TMRI1L registers are incremented on ewdogk input. Counting stops by
clearing this bit.

e The prescaler is cleared by clearing or writingdbanter registers.

« By filling both timer registers, the flag TMR1IF $&t and counting starts from zero.

76

Timer TMR2

Timer TMR2 module is an 8-bit timer which operaites bit specific way.

PWM Unit

Synchronous
serial port

A
— Prescaler : ’?@
E 1:1,1:4, 1:16 M f%..
T2CKPS1 / Postscaler LGl
T2CKPS0 Comparator r————————ﬂb) . TMR2IF
“-"{‘ # TMR2=PR2 1:1-1:16
Osc. % ' T20UTPSO
‘W PR2 T20UTPSA1
T20UTPS2

T20UTPS3

Fig. 4-13 Timer TMR2

The pulses from quartz oscillator first pass thiotlge prescaler whose rate may be changed by
combining the T2CKPS1 and T2CKPSO0 bits. The outpube prescaler is then used to increment
the TMR2 register starting from 00h. The valueSdfR2 and PR2 are constantly compared and
the TMR2 register keeps on being incremented untiliatches the value in PR2. When a match
occurs, the TMR2 register is automatically cleatedO00h. The timer TMR2 postscaler is
incremented and its output is used to generatatarrupt if it is enabled.

The TMR2 and PR2 registers are both fully readalple writable. Counting may be stopped by
clearing the TMR2ON bit, which contributes to powawring.

As a special option, the moment of TMR2 reset maalso used to determine synchronous serial
communication baud rate.

The timer TMR2 is controlled by several bits of T @CON register.

- [TOUTPS3[TOUTPS2[TOUTPS1[TOUTPSD TMR2ON| T2CKPS1]T2CKPSD

Legend

- Bit is unimplemented
R/W Readable/Writable bit
(0) After reset, bit is cleared

Fig. 4-14 T2CON register

77

TOUTPS3 - TOUTPSO - Timer2 Output Postcaler Sddgstare used to determine postscaler rate
according to the following table:

TOUTPS3 TOUTPS2 TOUTPS1 TOUTPSO Prescaler Rate
0 0 0 0 1:1
1:2
1:3
14
1:5
1:6
1.7
1:8
1:9
1:10
1:11
1:12
1:13
1:14
1:15
1:16

R R R R R R R PR OO OO OOl
P R R RO OOORRIRI R oOOO
R R OO R R OOR RIOOIRIRH O
R OrRr O R O R OR ORI OIR OR

TMR20ON - Timer2 On bit turns the timer TMR2 on.
e 1-TimerT2ison.
e O-Timer T2 is off.

T2CKPS1, T2CKPSO0- Timer2 Clock Prescale bits determine prescalts: r

T2CKPS1 T2CKPSO Prescaler Rate
0 0 1.1
0 1 1:4
1 X 1:16

When using the TMR2 timer, one should know sevepacific details that have to do with its
registers:

* Upon the power is on, the PR2 register containvathee FFh.

* Both prescaler and postscaler are cleared by gritirthe TMR2 register.
» Both prescaler and postscaler are cleared by gritirthe T2CON register.
* On any reset - you guess, both prescaler and pdstsre cleared.

78

Chapter 5: CCP Modules

The abbreviation CCP stands foapture/Compare/PWM

The Capture/Compare/PWM module is a peripheral wiallows the user to time and control
different events.

In Capture Mode, the peripheral allows timing of duration of areet/ This circuit gives insight
into the current state of some register which aomtt changes its value. In this case, it is theeti
TMRL1 register.

The Compare Mode compares values contained in two registers at gwirg. One of them is the
timer TMR1 register. This circuit also allows theeu to trigger an external event when a
predetermined amount of time has expired.

PWM - Pulse Width Modulatiogan generate signals of varying frequency and dytie.
The PIC16F887 microcontroller has two such module€P1 and CCP2.

Both of them are identical in normal mode, with #eeption of the Enhanced PWM features
available on CCP1 only. That is why this chaptescdées the CCP1 module in detail. Concerning
CCP2, only the features distinguishing it from CQMll be covered.

Complicated? Believe me, it is still not! All tésonly a simplified explanation on their operation
Everything is much more complicated in practiceause these modules can operate in many
different modes. Try to analyze their operationtlo@ basis of the tables describing bit functions.
Do you understand now what all this is about? Seespour nerves and follow a well-intentioned
advice: if you use any CCP module, first selectrttoele you need, analyze the appropriate figure
and then start changing bits of the registers seel

CCP1 Module

A central part of this circuit is a 16-bit regist&CPR1 which consists of the CCPR1L and
CCPRI1H reqisters. It is used for capturing or commgawith binary number stored in the timer
register TMR1 (TMR1H and TMR1L).

Module CCPR1 Registers

Register CCPR1H Register CCPR1L
- N - ™
I I B I s s I e I I I B B S e
bit 15 bit 8 bit7 bit 0

Fig. 5-1 CCP1 Module

In Compare mode, if enabled by software, the tilMdR1 reset may occur on match. Besides, the
CCP1 module can generate PWM signals of varyinguiacy and duty cycle.

Bits of the CCP1CON register controls the CCP1 nmdu

79

CCP1 in Capture mode

In this mode, the timer register TMR1 (consistifigilMR1H and TMR1L) is copied to the CCP1
register (consisting of CCPR1H and CCPRL1L) in tiking situations:

» Every falling edge (1 » 0) on the RC2/CCP1 pin.

» Everyrising edge (0 » 1) on the RC2/CCPL1 pin.

» Every 4th rising edge (0 » 1) on the RC2/CCP1 pin.
» Every 16th rising edge (0 » 1) on the RC2/CCP1 pin.

The combination of four bits (CCP1M3 - CCP1MO0) bétcontrol register determines which of
these events will trigger 16-bit data transferadidition, the following conditions must be met:

e RC2/CCP1 pin must be configured as input.
* TMR1 module must operate as timer or synchronousteo.

11} Flag bit CCP1IF

o
O Prescaler
5 © CCPR1
O 11, 1/4, 1116 f ~ .
& CCPR1H || CCPRIL |,
= f”f\"\\ ,4-’/\“\ \".,O
Lo & S] __________________ [\E] o
o 4
< _TMR1H_|| _TMRIL |
CCP1M3 N
CCP1M2 TMR1
CCP1M1
CCP1MO

Fig. 5-2 CCP1 in Capture mode

The flag bit CCP1IF is set when a capture is m#dehappens and if the CCP1IE bit of the PIE
register is set then an interrupt occurs.

When the Capture mode is changed, an undesiraptareanterrupt may be generated. In order to
avoid that, both a bit enabling CCP1IE interrupd #iag bit CCP1IF should be cleared prior to any
change occurs in the control register.

Undesirable interrupt may be also generated byckimi¢j from one capture prescaler to another.
To avoid this, the CCP1 module should be tempagrarilitched off before changing the prescaler.

80

The following program sequence is recommended:

BANKESEL CCP1CON

CLRF CCP1CON ;CONTROL REGISTER IS CLEARED
;CCP1 MODULE IS OFF

MOVLW XX ;NEW PRESCALER MODE IS SELECTE

MOVWF CCP1CON ;NEW VALUE IS LOADED TO THE QOI'ROL REGISTER
;CCP1 MODULE IS SIMULTANEOUSLSWITCHED ON

CCP1 in Compare mode

In this mode, the value in the CCP1 register isstamtly compared to the value in the timer
register TMR1. When a match occurs, the output RER/CCP1 logic state may be changed,
which depends on the state of bits in control tegifCCP1M3 - CCP1MO). The flag-bit CCP1IF
will be simultaneously set.

1| Flag bit CCP1IF

F

Timer T1 CCE‘R1
Reset . .

T | CCPR1H I CCPR1L I
<

T S TMR1H | TMRIL
TRISC,2 CCP1M2 - /

CCP1M1
CCP1MO TMR1

Pin
RC2/CCP1
1

Fig. 5-3 CCP1 in Compare mode
To setup CCP1 module to operate in this mode, tvalitions must be met:

* Pin RC2/CCP1 must be configured as output.
* Timer TMR1 must be synchronized with internal clock

CCP1 in PWM mode

Signals of varying frequency and duty cycle havevide application in automatic. A typical
example is a power control circuit whose simple wéyperation is shown in figure below. If a
logic zero (0) represents switch-off and logic ghgrepresents switchon, power the load obtains
will be directly proportional to the pulse duratidrhis ratio is often calleButy Cycle

81

.
K

Another example, common in practice, is the usdgeVéM signals in the circuit for generating
signals of arbitrary waveform, for example, sinus/eform. See figure below:

Fig. 5-4 CCP1 in PWM mode

U
M
PWM signal
before filtration
.
t
U
T PWM signal
T .
e \ S after filtration
s N / \ —>
—» N AN
H’__z/ \\h. '\\\H_ t

Fig. 5-5 CCP1 in PWM mode with filtration

Devices which operate in this way are often useprattice as switching regulators which control
the operation of motors (speed, acceleration, degigbn etc.).

82

Bits of CCP1CON Register

K
S

CCPR1L I I i

|

TMR2=PR2

TMR2=0

| CCcPRHH | | || | e] |
¥ | Pin
Comparator . RC2/CCP1

TRISC,2

Bits T2CKS1, T2ZCKPS0
of T2ZCON register
(Timer T2 prescaler)

Comparator

L
PR

Fig. 5-6 PWM module
The figure above shows block diagram of the CCPHutesetup in PWM mode. In order to

generate a pulse of arbitrary form on its output giis necessary to determine only two values-
pulse frequency and duration.

Period

~—+Pulse

PWM Period

The output pulse period (T) is specified by the RP&dister of the timer TMR2. The PWM period
can be calculated using the following equation:

PWM Period(T) = (PR2 +1) * 4Tosc * TMR2 Prescaldiéa

If the PWM Period (T) is known then, it is easydetermine the signal frequency F because these
two values are related by equation F=1/T.

83

PWM Duty Cycle

The PWM duty cycle is specified by using in totéll@ bits: eight MSbs found in the CCPR1L
register and two additional LSbs found in the CCONJegister (DC1B1 and DC1B0). The result
is 10-bit number contained in the formula:

Pulse Width = (CCPR1L,DC1B1,DC1B0) * Tosc * TMRZBcale Value

The following table shows how to generate PWM dgnaf varying frequency if the
microcontroller uses 20 MHz quartz-crystal (TosaxSD

Frequency [KHz] 1.22 4.88 19.53 78.12 156.3 208.3
TMR2 Prescaler 16 4 1 1 1 1
PR2 Register FFh FFh FFh 3Fh 1Fh 17h

At last, two notes:

* Output pin will be constantly set in case the pwigdth is by negligence determined to be
larger than PWM period.

* In this application, the timer TMR2 postscaler aainbe used for generating longer PWM
periods.

PWM Resolution

PWM signal is nothing but the pulse sequence wilnymg duty cycle. For one specified
frequency (number of pulses per second), therelisited number of duty cycle combinations.
That number is called resolution measured by Bits.example, a 10-bit resolution will result in
1024 discrete duty cycles, whereas an 8-bit resolutill result in 256 discrete duty cycles etc.
Concerning this microcontroller, the resolutiorsjpecified by the PR2 register. The maximal value
is obtained by writing number FFh.

PWM frequencies and resolutions (Fosc = 20MHz):

Sshe, 1.22kHz =~ 4.88kHz 19.53kHz = 78.12kHz 156.3kHz = 208.3kHz
Frequency
Timer Prescale 16 4 1 1 1 1
PR2 Value FFh FFh FFh 3Fh 1Fh 17h
Maximum 10 10 10 8 7 6
Resolution

PWM frequencies and resolutions (Fosc = 8MHz):

by, 1.22kHz = 4.90kHz = 19.61kHz @ 76.92kHz 153.85kHz = 200.0kHz
Frequency
Timer Prescale 16 4 1 1 1 1
PR2 Value 65h 65h 65h 19h och 09h
Maximum 8 8 8 6 5 5
Resolution

84

CCP1CON Register

| PAIM1_| P1M0_| DC1B1 | DC1B0 [CCP1M3|CCP1M2|CCP1M1|CCP1MO

Legend

RW Readable/Writable bit
{0) After reset, bit is cleared

Fig. 5-8 CCP1CON Register

P1M1, P1MO- PWM Output Configuration bits - In all modes,cepting PWM, the P1A pin is
Capture/Compare module input. P1B, P1C and P1Dagmhss input/output port D pins. In PWM
mode, these bits affect CCP1 module as shown itatle below:

PiM1 P1MO Mode
PWM with single output
0 0 Pin P1A outputs modulated signal.

Pins P1B, P1C and P1D are port D input/output

Full Bridge - Forward configuration

0 1 Pin P1D outputs modulated signal
Pin P1A is active
Pins P1B and P1C are inactive

Half Bridge configuration

1 0 Pins P1A and P1B output modulated signal
PinsP1C and P1D are port D input/output

Full Bridge - Reverse configuration

1 1 Pin P1B outputs modulated signal
Pin P1C is active
Pins P1A and P1D are inactive

DC1B1, DC1B0- PWM Duty Cycle Least Significant bits - are onlyed in PWM mode in which
they represent two least significant bits of a #abmber. This number determines PWM signal’'s
duty cycle. The rest of bits (8 in total) are stbire the CCPR1L register.

85

CCP1M3 - CCP1MO- CCP1 Mode Select bits determine the mode o€i®1 module.

CCP1M3
0
0

0

CCP1M2
0
0

0

CCP1IM1
0
0

1

CCP1IMO
0
1

0

Mode
Module is disabled (reset)
Unused
Compare mode
CCP1IF bit is set on match
Unused
Capture mode
Every falling edge on the CCP1 pin
Capture mode
Every rising edge on the CCP1 pin
Capture mode
Every 4th rising edge on the CCP1
pin
Capture mode
Every 16th rising edge on the CC
pin
Compare mode

Output and CCP1IF bit are set on
match

Compare mode

Output is cleared and CCPL1IF bit is
set on match

Compare mode

Interrupt request arrives and bi:
CCP1IF is set on match

Compare mode

Bit CCP1IF is set and timers 1 or 2
registers are cleared

PWM mode

Pins P1A and P1C are active-high
Pins P1B and P1D are active-high

PWM mode

Pins P1A and P1C are active-high
Pins P1B and P1D are active-low

PWM mode

Pins P1A and P1C are active-low
Pins P1B and P1D are active-high

PWM mode

Pins P1A and P1C are active-low
Pins P1B and P1D are active-low

86

CCP2 Module

Excluding different names of registers and bitss thodule is a very good copy of CCP1 module
setup in normal mode (previously discussed). Therenly one true difference between their
modes when CCP2 operates in Compare mode.

That difference refers to the timer T1 reset sigNa@mely, at the moment the values of the TMR1
and CCPR2 registers match and if A/D converternabéed, at the timer T1 reset signal will
automatically start A/D conversion.

1] Flag bit ccP2IF

F

Start of

CCPR2

¥ h

| CCPR2H I CCPR2L l

TMR1H || TMRIL
TRISC,1 e :

CCP2M1 .
CCP2MO TMR1

Pin
RC2/CCP2
]

Fig. 5-9 CCP2 Module

Similar to the pervious module, this circuit is endontrol of the bits of the control register. §hi
time, it is the CCP2CON register.

CCP2CON Reqgister

| - [bCzBt | DC2B0 [cCP2M3 [CCP2M2[CCP2M1 [CCP2MO|

Legend

- Bit is unimplemented
RW Readable/Writable bit
(0) After reset, bit is cleared

Fig. 5-10 CCP2CON Register
DC2B1, DC2B0 - PWM Duty Cycle Least Significant bits - are onhged in PWM mode

representing two least significant bits of a 10+hitmber. This number determines PWM signal’'s
duty cycle. The rest of bits (8 in total) are stbire the CCPR2L register.

87

CCP2M3 - CCP2MO0O- CCP2 Mode Select bits select CCP2 mode.

CCP2M3

0

o O o o

CCP2M2

oo O O

|_\

CCP2M1

0

=

(@)

CCP2MO

0

1
0
1

In short: Setup CCP1 module for PWM operation

Mode
Module is disabled (reset)
Unused
Unused
Unused
Capture mode
Every falling edge on the CCP2 pin
Capture mode
Every raising edge on the CCP2 pin
Capture mode
Every 4th rising edge on the CCP2
pin
Capture mode
Every 16th rising edge on the CC
pin
Compare mode

Output and CCP2IF bit are set cn
match

Compare mode
Output is cleared and CCP2IF bit is
set on match
Compare mode

Interrupt is generad, CCP2IF bit i
set and CCP2 pin is unaffected on
match

Compare mode

CCP2IF bit is set, Timer 1 registers
are cleared, A/D conversion is
started if the A/D converter is on on

match

PWM mode

In order to setup the CCP module for PWM operatibe,following steps should be taken:

Disable the CCP1 output pin. It should be configuae input.

Set the PWM period by loading the PR2 register.

Configure the CCP module for the PWM mode by conmiginbits of the CCP1CON

register.

Set the PWM signal’s duty cycle by loading the CAPRegister and using bits DC1B1
and DC1BO0 of the CCP1CON register.

Configure and start timer TMR2:

88

o Clear the TMR2IF interrupt flag bit of the PIR1 isgr.
o Set the timer TMR2 prescale value by loading bREKPS1 and T2CKPSO of the
T2CON register.
o Start the timer TMR2 by setting the TMR20ON bit b&tT2CON register.
* Enable PWM output pins after one PWM cycle has begshed:
o Wait for the timer TMR2 overflow (TMR2IF bit of theIR1register is set).
o Configure the appropriate pin as output by cleabin@f the TRIS register.

CCP1 in Enhanced Mode

The enhanced mode is available on CCP1 only. Biasitiais module does not differ from the one
previously described and enhancement refers tsrrmsion of PWM signal to the output pins.
Why is it so important? Because the microcontreli@e more and more used in control systems
for electric motors. These devices are not desgtiaze, but if you ever have had a chance to work
on development of similar devices, you will recagniNumerous elements which until quite
recently have been used as external ones. Nornadllifhese elements are now integrated into the
microcontroller and can operate in several differandes.

Single Output PWM Mode

This mode is enabled only in case the P1M1 and Phit0of the CCP1CON register are cleared.
In that case, there is only one PWM signal which ba simultaneously available on maximum
four different output pins. Besides, PWM signal nagypear in basic or inverted waveform. Signal
distribution is determined by the bits of the PSTRCregister, while its polarity is determined by
the CCP1M1 and CCP1MO bits of the CCP1CON register.

When inverted output is in use, the pins are lotivacand pulses having the same waveform are
always generated in pair: on the P1A and P1C pidsPd B and P1D pins, respectively.

copimt N TRISC2
CCP1M1 RC2 B Sl _
L == f Pin
1 3 " » | RC2/P1A
Rnli E STRB B TRISDS | |
N - . Pin
=] roses
— I
STRC E TRISD6
Rllzua E -
j Pin
ﬁ — 5 " * | RD6/PIC
D |
STRD E TRISDT
RD7 a -
[== . Pin
L
E > 3 RD7/P1D
— -
PORT [PWM INPUT f OUTPUT

Fig. 5-11 Single Output PWM Mode
89

Half-Bridge Mode

In this mode, the PWM signal is output on the P1A while at the same time the complementary
PWM signal is output on the P1B pin. Such pulsévate MOSFET drivers in Half-Bridge mode
which enable/disable current flow through device.

FE_T
Ffiver B B ____J____—i
___L,)___ }:]r -
Load
|
FET

o
=.
=
17}
=
e

|
|
/
f
|
T,
Ly
l

Fig. 5-12 Half-Bridge Mode

Concerning this circuit, it is very dangerous tatstw on both MOSFET drivers simultaneously.
The short circuit caused in that moment will beafatn order to avoid that, it is necessary to
provide a short delay between switching driversand off. This delay is marked as “td” in figure
below. The problem is solved by using the PDCO-PDb{&6of the PWM1CON register.

Period - Period

Pulse Width

F 3
Y

b

TMR2 = PR2 —» TMR2 = PR2 —» TMR2 = PR2 —»

90

As shown in figure, the same mode can be usedtitcate MOSFET drivers in Full Bridge:

T N+
—] FET

| FET L Driver

PiA | ___¢|_ “-}_+H% {r: —<ih

FET
Driver

G

1
h
T
|
|

Fig. 5-14 Activate MOSFET drivers

Full-Bridge Mode

In Full-Bridge mode, all four pins are used as atgpIn practice, this mode is commonly used to
run motor, which provides simple and complete adraf speed and rotation direction. There are
two such configurationgzull Bridge-ForwardandFull Bridge-Reverse

FET
Driver

L _{,ﬂ»__-
—

Fig. 5-15 Full-Bridge Mode

91

Full Bridge - Forward Configuration
In Forward mode the following occurs:

Logic one (1) appears on the P1A pin (pin is highva).
* Pulse sequence appears on the P1D pin.
* Logic zero (0) appears on the P1B and P1C pins (gme low-active).
» Figure below shows the state of the P1A-P1D pingidwone full PWM cycle.

Full Bridge - Reverse Configuration

The same occurs iReversanode, except of the pins functions:

* Logic one (1) appears on the P1C pin (pin is adtigh).
* Pulse sequence appears on the P1B pin.
* Logic zero (0) appears on the P1A and P1D pins(gre active-low).

o Period o
Pulse Width
- |
P1A | |
P1B 4‘ ‘ [
P1C
P1D

P1A
3 Period R
P1B |
Pulse Width
PIC|
P1D I

92

PWM1CON Register STRC PWM Restart Enable bit
e 1 - Upon auto-shutdown, the PWM module is autoradijiceset, while the ECCPASE bit
of the ECCPAS register is cleared.
e 0 - In order to restart PWM module upon auto-shwittldhe ECCPASE bit must be cleared
in software.

PDC6 - PDCO- PWM Delay Count bits. 7-digit binary number deimes the number of
instruction cycles (4*Tosc) added as time delayrduthe activation of PWM output pins.

RIW (0) RIW (D) RIW (0) RW (0} RW (0) RAW (0} RW (0} RW (0} Features
PWM1CON | PRSEN | PDC6 | PDC5 | PDC4 | PDC3 | PDC2 | PDC1 | PDCO | Bit name
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Legend

RW Readable/Writable bit
(0} After reset, bit is cleared

Fig. 5-18 PWM1CON Register
PSTRCON Register

STRSYNC - Steering Sync bidetermines the moment of PWM pulse steering:

» 1 - Steering occurs upon the PSTRCON has been etabgt only if a PWM waveform is
completed.

» 0 - Steering occurs upon the PSTRCON register kas lthanged. The PWM signal on
output pin is immediately changed with no regardwbether the previous cycle is
completed or not. This operation is useful whes iteeded to immediately remove a PWM
signal from the pin.

STRD - Steering Enable bit Ddetermines the P1D pin function.
* 1-P1D pin has the PWM waveform with polarity qoiied by the CCP1M0 and CCP1M1
bits.
* 0 - Pinis configured as general port D input/otitpu

STRC Steering Enable bit Cdetermines the P1C pin function.
* 1-P1C pin has the PWM waveform with polarity coited by the CCP1M0 and CCP1M1
bits.
* 0-Pinis configured as general port D input/otitpu

STRB - Steering Enable bit Bdetermines the P1B pin function.
* 1-P1B pin has the PWM waveform with polarity colied by the CCP1M0 and CCP1M1
bits.
* 0- Pinis configured as general port D input/otitpu

STRA - Steering Enable bit Adetermines the P1A pin function.
* 1-P1D pin has the PWM waveform with polarity goiied by the CCP1M0 and CCP1M1
bits.
* 0 - Pinis configured as general port Ainput/output

93

ECCPAS Register

[ECCPASE|ECCPAS2 [ECCPAS1|ECCPASO|PSSAC1 |PSSACO|PSSBD1|PSSBDO

Legend

RW Readable/Writable bit
(0 After reset, bit is cleared

Fig. 5-19 ECCPAS Register

ECCPASE - ECCP Auto-Shutdown Event Status bitindicates whether shut-down of CCP
module has occurred (Shutdown state):

1 - CCP module is in Shutdown state.

0 - CCP module operates normally.

ECCPAS2 - ECCPASO - ECCP Auto-Shutdown Source Seledits select auto shutdown
source:

ECCPAS2 ECCPAS1 ECCPASO Shutdown state source
0 0 0 Shutdown state disabled
0 0 1 Comparator C1 output
change
0 1 0 Comparator C2 output
change
0 1 1 Comparator C1 or Cz

output change

Logic zero (0) on INT

1 0 0 :
pin
Logic zero (0) on INT
1 0 1 pin or comparator C1

output change

Logic zero (0) on INT
1 1 0 pin or comparator C2
output change

Logic zero (0) on INT
1 1 1 pin or comparator C1 «
C2 output change

94

PSSAC1, PSSACO - Pins P1A, P1C Shutdown State Couitibits define logic state on output
pins P1A and P1C when CCP module is in shutdowe.sta

PSSAC1 PSSACO Pins logic state
0 0 0
0 1 1
1 X High impedance (Tri-state)

PSSBD1, PSSBDO - Pins P1B, P1D Shutdown State Caitbits define logic state on output
pins P1B and P1D when CCP module is in shutdowe.sta

PSSBD1 PSSBDO Pins logic state
0 0 0
0 1 1
1 X High impedance (Tri-state)

95

Chapter 6: Serial Communication Modules

EUSART

Enhanced Universal Synchronous Asynchronous Recdikensmitter (EUSART) module is a
serial I/O communication peripheral. It is also Wwmoas Serial Communications Interface (SCI). It
contains all clock generators, shift registers dath buffers necessary to perform an input or
output serial data transfer independently of deprogram execution. As its name tells, apart from
the usage of clock for synchronization, this modtde also establish asynchronous connection,
which makes it irreplaceable in some applications.

U T LT L i

For example, in case it is difficult or impossiltte provide special channels for clock and data
transfer (for example, radio remote control or anéd), the EUSART module imposes itself as
convenient solution.

The EUSART system integrated into the PIC16F88#aumntroller has the following features:

* Full-duplexasynchronous transmit and receive

* Programmable 8- or 9-bit character length

* Address detection in 9-bit mode

* Input buffer overrun error detection

» Half-duplex communication in synchronous mode (@rast slave)

EUSART Asynchronous Mode
The EUSART transmits and receives data using stdndan-return-to-zero (NRZ) format. As

seen in figure below, this mode does not use céighal, while the data format being transferred is
very simple:

96

Idle State STOP hit

* START bit 8- or 9-bit data * START bit

T LLOO0000OO0 T IO

Fig. 6-2 EUSART Asynchronous Mode

Briefly, each data is transferred in the followingy:

* Inidle state, data line has high logic level (1).

» Each data transmission starts with START bit whschlways a zero (0).

» [Each data is 8- or 9-bit wide (LSB bit is firstrigderred)

» [Each data transmission ends with STOP bit whictagdahas logic level which is always a
one (1).

EUSART Asynchronous Transmitter

TXIE CPU
: \ 1
Interrupt 4—@ TXIF | 4 x|x|x|x|x|x|x|x|TXREG

ich RCEI/TX pin
@Eﬂ:ﬂﬂ <

TXEN Register TSR
SPEN
Fosc—» “ ----Tx9
1%
TX9D TRMT
SPERGH x4 m

. svw [1]x]o[o] o |
8RG8 — o~ [eron [x[11[o[o |
rote]x|1]0[1] o |

Baud Rate Generator

SPERG

Fig. 6-3 EUSART Asynchronous Transmitter

In order to enable data transmission via EUSART ut®dt is necessary to configure it to operate
as a transmitter. | other words, it is necessadefme the state of the following bits:

TXEN = 1 - EUSART transmitter is enabled by setting thisabithe TXSTA register.

SYNC = 0- EUSART is configured to operate in asynchronowsle by clearing this bit of the
TXSTA register.

97

SPEN = 1- By setting this bit of the RCSTA register, EUSAR enabled and the TX/CK pin is
automatically configured as output. If this bitsisnultaneously used for some analog function, it
must be disabled by clearing the correspondingfitite ANSEL register.

The central part of the EUSART transmitter is theftsregister TSR which is not directly
accessible by the user. In order to start transamsshe module must be enabled by setting the
TXEN bit of the TXSTA register. Data to be sent gldobe written to the TXREG register, which
will cause the following sequence of events:

» Byte will be immediately transferred to the shdgister TSR.

 TXREG register remains empty, which is indicatedsleyting flag bit TXIF of the PIR1
register. If the TXIE bit of the PIE1 register istsan interrupt will be generated. Besides,
the flag is set regardless of whether an intensuphabled or not. Also, it cannot be cleared
by software, but by writing new data to the TXRE&§ister.

» Control electronics “pushes” data toward the TX ipimhythm with internal clock: START
bit (0) ... data ... STOP bit (1).

* When the last bit leaves the TSR register, the TRbTof the TXSTA regis ter is
automatically set.

» |If the TXREG register has received a new charadsa in the meantime, the whole
procedure is repeated immediately after the STQ@Rfbihe previous character has been
transmitted.

Sending 9-bit data is enabled by setting the TX®bthe TXSTA register. The TX9D bit of the
TXSTA register is the ninth and Most Significantalait. When transferring 9-bit data, the TX9D
data bit must be written before writing the 8 lesighificant bits into the TXREG register. All nine
bits of data will be transferred to the TSR shégister immediately after the TXREG write is
complete.

EUSART Asynchronous Receiver

; e [xts s

s [{[[ofo] o |
w1 1]o[|
orcrels 1 oli o

SPEN FERR CREN OERR RCIDL
i byt
RC7/RX pin _ RSR Register
SPBRGH RCREG Register] ¥y -
RX9D |(x [|3 |2 | [x [x |[x
| FIFO

SPBRG

Baud Rate Generator

Fig. 6-4 EUSART Asynchronous Receiver

98

Similar to the activation of EUSART transmitter, amder to enable receiver it is necessary to
define the following bits:

CREN = 1- EUSART receiver is enabled by setting this bithe RCSTA register.

SYNC = 0- EUSART is configured to operate in asynchronmasle by clearing this bit stored in
the TXSTA register.

SPEN = 1- By setting this bit of the RCSTA register, EUSRAR enabled and the RX/DT pin is
automatically configured as input. If this bit isnsiltaneously used for some analog function, it
must be disabled by clearing the correspondingfiiite ANSEL register.

Upon this first and necessary step is accomplisimedSTART bit is detected, data is transferred to
the shift register RSR through the RX pin. Upon $EOP bit has been received, the following
occurs:

» Data is automatically transferred to the RCREGstegi(if empty).

* The flag bit RCIF is set and an interrupt, if emabby the RCIE bit of the PIE1 register,
occurs. Similar to transmitter, the flag bit isarked by software only, i.e. by reading the
RCREG register. Have in mind that this is a tworabhter FIFO memoryfifst-in, first-ou
which allows reception of two characters simultarsby

» If the RCREG register is occupied (contains twoebytand the shift register detects new
STOP bit, the overflow bit OERR will be set. Indhsase, a new coming data is lost, and
the OEER bit must be cleared by software. It isedby clearing and resetting the CREN
bit.

Note: it is not possible to receive new data as fas the OERR bit is set.

* |If the STOP bit is zero (0), the FERR bit of the R register detecting receive error will
be set.

* To receive 9-bit data it is necessary to set th® RBiXof the RCSTA register.

Receive Error Detection

There are two types of errors which the microcdl@raan automatically detect. The first one is
called Framing errorand occurs when the receiver does not detect Tii@gPSoit at the expected
time. Such error is indicated via the FERR bithed RCSTA register. If this bit is set, it meand tha
the last received data may be incorrect. It is irgrd to know several things:

* A Framing errordoes not generate an interrupt by itself.

» If this bit is set, the last received data hasraore

* A framing error (bit set) does not prevent recaptd new data.

 The FERR bit is cleared by reading received datachvmeans that check must be done
before data reading.

* The FERR bit cannot be cleared by software. If eded can be cleared by clearing the
SPEN bit of the RCSTA register. It will simultanebycause reset of the whole EUSART
system.

Another type of error is calle@verrun Error. The receive FIFO can hold two characters. An
overrun error will be generated if the third chaeads received. Simply, there is no space for
another one byte and an error is unavoidable! Wthenhappens the OERR bit of the RCSTA
register is set. The consequences are the following

99

» Data already stored in the FIFO registers (two $jytan be normally read.

* No additional data will be received until the OERIRis cleared.

» This bit is not directly accessed. To clear itisinecessary to clear the CREN bit of the
RCSTA register or to reset the whole EUSART systgnclearing the SPEN bit of the
RCSTA register.

Receiving 9-bit Data

In addition to receiving standard 8-bit data, thdSART system supports 9-bit data reception. On
transmit side, the ninth bit is “attached” to thegmal byte just before the STOP bit. On receive
side, when the RX9 bit of the RCSTA register is #& ninth data bit will be automatically written
to the RX9D bit of the same register. When thishgtreceived, one should take care of how to
read its bits- the RX9D data bit must be read leef@ading the 8 least significant bits of the
RCREG register. Otherwise, the ninth data bit indlautomatically cleared.

RSR Register

JLIUULIN

RCREG Register [T = R
RX9D Ix x|x|x x|x|x x.

FIFO

CPU

Fig. 6-5 Receiving 9-bit Data
Address Detection

When the ADDEN bit of the RCSTAregister is set, HH¢SART module is able to receive only 9-
bit data, whereas all 8-bit data will be ignoredthAugh it seems like restriction, such mode
enables serial communication between several noatoallers. The principle of operation is
simple. The master device sends 9-bit data whigtesents the address of one microcontroller. All
slave microcontrollers sharing the same transmmsBiee, receive this data. Of course, each of
them must have the ADDEN bit set because it enauldsess detection.

100

ADDEN =1 ADDEN =1 ADDEN=1

EUSART EUSART 1 EUSART 2 EUSART 3

——

{ _

——9.bit address

Fig. 6-6 Address Detection

Upon receiving that data each slave checks if dolalress matches its own. Software in which
address match occurs, must disable address detduyiclearing its ADDEN bit. The master
device keeps on sending 8-bit data. All data pgssirough the transmission line will be received
by “recognized” EUSART module only. Upon receivitige last byte, the slave device should set
the ADDEN bit in order to enable a new addressatiete.

ADDEN =1 ADDEN =0 ADDEN =1

EUSART EUSART 1 EUSART 3

=

—

—8-bit data

i
M

Fig. 6-7 Sending Data

101

TXSTA Register

| CSRC | TX9 | TXEN | SYNC |SENDB | BRGH | TRMT | TX9D |

Legend

RW Readable/Writable bit

R Readable bit

{0} After reset, bit is cleared
(1) After reset, bit is set

CSRC - Clock Source Select bit determines clock source. It is used only in fyonous mode.
* 1 - Master mode. Clock is generated internally fildaud Rate Generator.
* 0 - Slave mode. Clock is generated from externaicso

TX9 - 9-bit Transmit Enable bit
* 1 - 9-bit data transmission via EUSART system.
* 0 - 8-bit data transmission via EUSART system.

TXEN - Transmit Enable bit
« 1 - Transmission enabled.
* 0 - Transmission disabled.

SYNC - EUSART Mode Select bit
* 1 - EUSART operates in synchronous mode.
* 0 - EUSART operates in asynchronous mode.

SENDB - Send Break Character bitis only used in asynchronous mode and only in darse
required to observe LIN bus standard.

* 1 - Sending Break character is enabled.

* 0 - Break character transmission is completed.

BRGH - High Baud Rate Select bitdetermines baud rate in asynchronous mode. It does
affect EUSART in synchronous mode.

* 1 - EUSART operates at high speed.

* 0 - EUSART operates at low speed.

TRMT - Transmit Shift Register Status bit
* 1- TSR registeris empty.
* 0- TSR register is full.

TX9D - Ninth bit of Transmit Data can be used as address or parity bit.

102

RCSTA Register

| SPEN | RXo | SREN | CREN |ADDEN | FERR | OERR | RX9D |

Legend

RW Readable/Writable bit

R Readable bit

Q) After reset, bit is cleared
(x) After reset, bit is unknown

SPEN - Serial Port Enable bit
* 1 - Serial port enabled. RX/DT and TX/CK pins amomatically configured as input and
output respectively.
* 0 - Serial port disabled.

RX9 - 9-bit Receive Enable bit
* 1 - Receiving 9-bit data via EUSART system.
* 0 - Receiving 8-bit data via EUSART system.

SREN - Single ReceiveEnabldit is used only in synchronous mode when the ocmntroller
operates as master.

* 1 - Single receive enabled.

* 0 - Single receive disable.

CREN - Continuous Receive Enable biacts differently depending on EUSART mode.

Asynchronous mode:
« 1 - Receiver enabled.
¢ 0 - Receiver disabled.

Synchronous mode:
* 1 - Enables continuous receive until the CREN<dleared.
e 0 - Disables continuous receive.

ADDEN - Address Detect Enable bitis only used in address detect mode.
* 1 - Enables address detection on 9-bit data receive
* 0 - Disables address detection. The ninth bit @anded as parity bit.

FERR - Framing Error bit
* 1-0Onreceive, Framing Error is detected.
* 0 - No framing error.

OERR - Overrun Error bit.
e 1-0nreceive, Overrun Error is detected.
e 0-No overrun error.

RX9D - Ninth bit of Received Datacan be used as address or parity bit.

103

EUSART Baud Rate Generator (BRG)

If you carefully look at the asynchronous EUSARTaiger or transmitter diagram, you will see in
both cases that clock signal from the local timB@is used for synchronization. The same clock
source is also used in synchronous mode.

This timer consists of two 8-bit registers comprisone 16-bit register.

Baud Rate Generator Registers

e
- =,
SPBRGH Register SPBRG Register
_’k _J
[- — — — — — — — RN .
bit 15 bit8 bit7 bit 0

Fig. 6-10 EUSART Baud Rate Generator (BRG)

A number written to these two registers determibasd rate. Besides, both BRGH bit of the
TXSTA register and BRGH16 bit of the BAUDCTL regsaffect clock frequency.

The formula used to determine Baud Rate is givahertable below.

Bits BRG / EUSART Baud Rate
SYNC BRG1G BRGH Mode Formula

0 0 0 8-bit / Fosc / [64 (n + 1)]
asynchronous

0 0 1 8-bit / Fosc / [16 (n + 1]
asynchronous

0 1 0 16-bit/ e 116 (n + 1))
asynchronous

0 1 1 16-bit / Fosc/[4 (n + 1)]
asynchronous

1 0 X 8-bit/ Fosc / [4 (n + 1)]
asynchronous

1 1 X 16-bit/ Fosc/[4 (n + 1)]
asynchronous

The following tables contain values that should virétten to the 16-bit register SPBRG and
assigned to the SYNC, BRGH and BRGH16 bits in otdeobtain some of the standard baud
rates.

104

The formulas used to determine the Baud Rate are:

Desired Baud Rate =

Error [%] =

Fosc

64(SPBRGH:SPBRG - 1)

Calc.Baud Rate - Desired Baud Rate

Desired Baud Rate

SPBRGH.SPBRG =

SYNC =0, BRGH =0, BRG16 =0

Fosc =20 MHz Fosc=18.432 MHz | Fosc = 11.0592 MHz

Fosc

Desired Baud Rate

64

Fosc = 11.0592 MHz

Baud Rate Actual | Error SPBRG
value value
(dec.)
300 - - - - - - - - - - - -
1200 1221 1.73 255 1200 0.00 239 1200 0.00 143 1202 0.16 103
2400 2404 0.16 129 2400 0.00 119 2400 0.00 71 2404 0.16 51
9600 9470 -1.36 32 9600 0.00 29 9600 0.00 17 9615 0.16 12
10417 [10417 0.00 29 10286 -1.26 27 10165 -2.42 16 10417 0.00 1
19.2k 19.53 1.73 15 19.2 0.00 14 19.2 0.00 8 - - -
57 .6k - - - 57.6k 0.00 T 576 0.00 2 - - -
115.2k - - - - - - - - - - - -

e Actual | Error SERE Actual | Error SHENE

value Rate | % \I.fal ue |'cite | o '_s-'aluel yaluel

(dec.) ' (dec.) : (dec.) (dec.)
300 300 0.16 207 300 0.00 191 300 0.16 103 300 0.16 51
1200 1202 0.16 51 1200 0.00 47 1202 0.16 25 1202 0.16 12
2400 2404 0.16 25 2400 0.00 23 2404 0.16 12 - - -
9600 - - - 9600 0.00 5 - - - - - -
10417 |10417 0.00 5 - - - 10417 0.00 2 - - -
19.2k - - - 19.2 0.00 2 - - - - - -
57.6k - - - 57.6k 0.00 0 - - - - - -
115.2k - - - - - - - - - - - -

Baud Rate _ SPBRG SPBRG
Actual
i ﬁ_.ralue valug }ralue
(dec.) (dec.) (dec.)
300 - - - - - - - - - - - -
1200 - - - - - - - - - - - -
2400 - - - - - - - - - 2404 0.16 207
9600 9615 0.16 129 9600 0.00 119 9600 0.00 71 9615 0.16 51
10417 10417 0.00 119 10378 -0.37 110 10473 0.53 65 10417 0.00 47
19.2k 19.23k 0.16 64 19.2 0.00 59 19.2k 0.00 35 19231 0.16 25
57.6k 56.82k -1.36 21 57.6k 0.00 19 57.6k 0.00 11 55556 -3.55 8
115.2k |[113.64k -1.36 10 115.2k 0.00 9 115.2k 0.00 5 - - -

105

SYNC =0, BRGH =1, BRG16 =0

Fosc = 3.6864 MHz Fosc = 1 MHz
Baud Rate SPBRG
value value value
(dec.) (dec.)
300 - - - - - - - - - 300 016 207
1200 1202 016 207 1200 0.00 1:M 1202 0.16 103 1202 0.16 51
2400 2404 016 103 2400 0.00 95 2404 0.16 51 2404 0.16 25
9600 9615 0.16 25 9600 0.00 23 9615 0.16 12 - - -
10417 10417 0.00 23 10473 0.00 11 10417 0.00 11 10417 0.00 5
19.2k 19.23k 0.16 12 19.2 0.00 11 - - - - - -
57.6k - - - 57.6k 0.00 3 - - - - - -
115.2k - - - 115.2k 0.00 1 - - - - - -

Baud Rate Actual SPBRG Actual | Error mrolile Actual |Error SPBRG Actual SPERG
Rate yaluel Rate | % i Rate | % ’."faluF‘f Rate \I.ralue?

(dec.) (dec.) (dec.) (dec.)

300 0.00

1200 1200 -0.03 1041 1200 0.00 959 1200 0.00 575 1199 -0.08 416
2400 2399 -0.03 520 2400 0.00 479 2400 0.00 287 2404 016 207
9600 9615 0.16 129 9600 0.00 119 9600 0.00 71 9615 0.16 51
10417 10417 0.00 119 |10378 -0.37 110 |10473 0.53 65 10417 0.00 47
19.2k 19.23k 0.16 64 19.2k 0.00 59 19.2k 0.00 35 19.23k 0.16 25
57.6k 56.818 -1.36 21 57.6k 0.00 19 57.6k 0.00 1M 55556 -3.55 8
115.2k |113.636 -1.36 10 115.2k 0.00 9 115.2k 0.00 5 - - -

Baud Rate SPBRG SPBRG
Actual |Error

valug Rate o value _.falue value

{dec.) ' {dec.) (dec.) (dec.)

300 3001 0.04 832 300 0.00 767 |299.8 -0.108 416 300.5 0.16 207
1200 1202 016 207 1200 0.00 191 1202 0.16 103 1202 0.16 51
2400 2404 016 103 2400 0.00 95 2404 0.186 51 2404 0.16 25
9600 9615 0.16 25 9600 0.00 23 9615 0.16 12 - - -
10417 10417 0.00 23 10473 0.53 21 10417 0.00 11 10417 0.00 5
19.2k 19.23k 0.16 12 19.2k 0.00 11 - - - - - -
57 .6k - - - 57.6 0.00 3 - - - - - -
115.2k - - - 115.2k 0.00 1 - - - - - -

Baud Raf
auaiate Actual Actual |Error Actual Actual 2rlhis
value value
Rate Rate : : Rate
(dec.) (dec.)
300 300 0.00 16665 | 300 0.00 15359 | 300 0.00 9215 300 0.00 6666
1200 1200 -0.01 4166 1200 0.00 3839 | 1200 000 2303 | 1200 -0.02 1666
2400 2400 0.02 2082 | 2400 0.00 1919 | 2400 0.00 1151 2401 0.04 832
9600 9597 -0.03 520 9600 0.00 479 9600 0.00 287 a615 0.16 207
10417 10417 0.00 479 [10425 0.08 441 10433 0.16 264 10417 0O 191
19.2k 19.23k 0.16 259 19.2k 0.00 239 19.2k 0.00 143 |19.23k 0.16 103
57.6k 5747k -0.22 86 57.6k 0.00 79 57.6k 0.00 47 57.14k -0.79 34
115.2k |116.3k 0.95 42 115.2k 0.00 39 115.2k 0.00 23 117.6k 2.12 16

106

SYNC =0, BRGH =1, BRG16 =1 or SYNC = 1, BRGH16 =1

Baud Rate SPBRG SPBRG
Actual |Error

value value value value

(dec.) ’ (dec.) “ {dec.) - (dec.)

300 300 0.01 3332 300 0.00 3071 |2999 -0.02 1666 | 300.1 0.04 832
1200 1200 0.04 832 1200 0.00 767 1199 -0.08 416 1202 016 207
2400 2398 0.08 416 2400 0.00 383 2404 016 207 2404 016 103
9600 9615 0.16 103 9600 0.00 96 9615 0.16 51 9615 0.16 25
10417 10417 0.00 95 10473 0.53 87 10417 0.00 47 10417 0.00 23
19.2k 19.23k 0.16 51 19.2k 0.00 A7 19.23k 0.16 25 19.23k 0.16 12
576k |58.82k 2.12 16 57.6k 0.00 15 55.56k -3.55 8 - - -

1152k |111.1k -3.55 8 115.2k 0.00 7 - - - - - -

BAUDCTL Register

| ABDOVF| RCIDL | - | SCKP_|BRG16 | - | WUE |ABDEN_

Legend

- Bit is unimplemented
R/W Readable/Writable bit

R Readable bit

(0) After reset, bit is cleared
(1) After reset, bit is set

ABDOVF - Auto-Baud Detect Overflow bit is only used in asynchronous mode during baud rate

detection.
e 1 - Auto-baud timer overflowed.
¢ 0 - Auto-baud timer did not overflowed.

RCIDL - Receive Idle Flag bitis only used in asynchronous mode.
* 1-Receiverisidle.
* 0- START bit has been received and receiving [srogress.

SCKP - Synchronous Clock Polarity Select biacts differently depending on EUSART mode.

Asynchronous mode:
* 1 - Transmit inverted data to the RC6/TX/CK pin.
* 0 - Transmit non-inverted data to the same pin.

Synchronous mode:

* 1 - Synchronization on rising edge of the clock.
* 0 - Synchronization on falling edge of the clock.

WUE Wake-up Enable bit
1 - Receiver waits for a falling edge on the RC7/BK pin to start waking up the
microcontroller from sleep mode.
* 0 - Receiver operates normally.

107

ABDEN - Auto-Baud Detect Enable bitis used in asynchronous mode only.

1 - Auto-baud detect mode is enabled. Bit is autaally cleared on baud rate detect.
0 - Auto-baud detect mode is disabled.

In Short:

Sending data via asynchronous EUSART communication:

1.

6.

7.

The desired baud rate should be set by using BR&HB (TXSTA register) and BRG16
(BAUDCTL register) and registers SPBRGH and SPBRG.

The SYNC bit (TXSTA register) should be cleared ahd SPEN bit should be set
(RCSTA register) in order to enable serial port.

On 9-bit data transmission, the TX9 bit of the TX¥SrEgister should be set.

Data transmission is enabled by setting bit TXENha&f TXSTA register. Bit TXIF of the

PIR1 register is automatically set.

If needed the bit TXEN causes an interrupt, the @il PEIE bits of the INTCON register
should be set.

On 9-bit data transmission, value of the ninthshibuld be written to the TX9D bit of the
TXSTA register.

Transmission starts by writing 8-bit data to theRIBG register.

Receiving data via asynchronous EUSART communinatio

1.

2.

7.

Baud Rateshould be set by using bits BRGH (TXSTA registanyl BRG16 (BAUDCTL
register) and registers SPBRGH and SPBRG.

The SYNC bit (TXSTA register) should be cleared ahd SPEN bit should be set
(RCSTA register) in order to enable serial port.

If it is necessary the data receive causes armruperboth the RCIE bit of the PIEL register
and bits GIE and PEIE of the INTCON register shdaddset.

On 9-bit data receive, the RX9 bit of the RCSTAistay should be set.

Data receive should be enabled by setting the CBRIEdF the RCSTA register.

The RCSTA register should be read to get infornmaom possible errors which have
occurred during transmission. On 9-bit data recetlie ninth bit will be stored in this
register.

Received 8-bit data stored in the RCREG registeulshbe read.

Setting Address Detection Mode:

1.

2.

No

Baud Rate should be set by using bits BRGH (TXS&éister) and BRG16 (BAUDCTL
register) and registers SPBRGH and SPBRG.

The SYNC bit (TXSTA register) should be cleared ahd SPEN bit should be set
(RCSTA register) in order to enable serial port.

If it is necessary the data receive causes amruperthe RCIE bit of the PIE1 bit as well as
bits GIE and PEIE of the INTCON register shouldskbe

The RX9 bit of the RCSTA register should be set.

The ADDEN of the RCSTA register should be set, \wheoables a data to be interpreted as
address.

Data receive is enabled by setting the CREN bihefRCSTA register.

Immediately upon 9-bit data is received, the RCIE df the PIR1 register will be
automatically set. If enabled, an interrupt occurs.

108

8. The RCSTA register should be read in order to gitrination on possible errors which
have occurred during transmission. The ninth biBRXs always set.

9. Received 8-bits stored in the RCREG register shbaldead. It should be checked whether
the combination of these bits matches the predefadidress. If the match occurs, it is
necessary to clear the ADDEN bit of the RCSTA regjswhich enables further 8-bit data
receive.

Master Synchronous Serial Port Module

MSSP moduleNlaster Synchronous Serial Ppit a very useful, but at the same time one of the
most complex circuit within the microcontroller.dhables high speed communication between a
microcontroller and other peripherals or microcolr devices by using few input/output lines
(maximum two or three). Therefore, it is commonged to connect the microcontroller to LCD
displays, A/D converters, serial EEPROMSs, shiftisegs etc. The main feature of this
communication is that it is synchronous and sugdbl use in systems with a single master and
one or more slaves. A master device contains thessary circuitry for baud rate generation and
supplies the clock for all devices in the systertav& devices may in that way eliminate the
internal clock generation circuitry. The MSSP madcén operate in one of two modes:

* SPI mode (Serial Peripheral Interface)
* 12C mode (Inter-Integrated Circuit)

As seen in figure, one MSSP module represents aiglf of hardware needed to establish serial
communication, while another half is stored in devihe data is exchanged with. Even though the
modules on both ends of the line are the same;, thedes are essentially different depending on
whether they operate as a master or a slave:

If the microcontroller to be programmed controlotier device or circuit (peripherals), then it
should operate as a master device. A module detisesich will generate clock when needed, i.e.
only when data receive and transmit is requiredhleysoftware. It depends on the master whether
the connection will be established or not. Otheewitthe microcontroller to be programmed is a
part of some peripheral which belongs to some ncoraplex device (for example PC), then it
should operate as a slave device. As such, it amag to wait for request for data transfer from

master device.
SPl mode
Processor 1

) TUUUUU UYL |:> Processor 2
nn =
Master | & nnnn Slave
2
1°C mode
Processor 1| rnnnmnnnnn = Processor 2
@ o
Master | = Slave

109

SPI Mode

The SPI mode allows 8 bits of data to be transohitte@d received simultaneously using 3
input/output lines:

*« SDO - Serial Data Out - transmit line.
e SDI - Serial Data In - receive line.
* SCK - Serial Clock - synchronization line.

In addition to these three lines, in case the nomndroller exchanges data with several peripheral
devices, the forth line (SS) may be also used. Reffigure below.

SS - Slave Select - is additional pin used for gjgedevice selection. It is active only in case th
microcontroller is in slave mode, i.e. when thecexél - master device requires data exchange.

When operating in SPI mode, MSSP module uses ah ¢dé¥ registers:

» SSPSTAT - status register

* SSPCON - control register

» SSPBUF - buffer register

* SSPSR - shift register (not directly available)

The first three registers are writable/readable @and be changed at any moment, while the forth
register, since not available, is used for conagrdata into “serial” format.

Selected peripheral
device to accomplish
SPI communication with

1] o] 1]ss=1 §5=1
Master [Slave e Slave
SPI SPI SPI
558 558
3 § Bl—puw |
-

As seen in figure, the central part of the SPI n®donsists of two registers connected to pins for
receive, transmit and synchronization.

Shift register (SSPRS) is directly connected to the microcorgrolpins and used for data
transmission in serial format. The SSPRS regiserits input and output and shifts the data in and
out of device. In other words, each bit appearingirgout (receive line) simultaneously shifts
another bit toward output (transmit line).

The SSPBUFregister (Buffer) is a part of memory used to temaply hold the data written to the

SSPRS until the received data is ready. Upon rewesdl 8 bits of data, that byte is moved to the
SSPBUF register. This double buffering of the reedidata (SSPBUF) allows the next byte to
start reception before reading the data that wsisrpceived. Any write to the SSPBUF register

110

during transmission/reception of data will be iggohr Since having been the most accessed, this
register is considered the most important frompifeggrammers’ point of view.

Namely, if mode settings are neglected, data temnsh SPI actually means to write and read data
from this register, while another “acrobatics” sashmoving registers are automatically performed

by hardware.

ssPBUF | 5| | — 1 _PK | sspPBUF
4 4
—

In short:
Prior to initializing the SPI, it is necessary fesify several options:

» Master mode (SCK pin is the clock output)

* Slave mode (SCK pin is the clock input)

» Data input phase- middle or end of data output (8P bit)
* Clock edge (CKE bit)

* Baud Rate (only in Master mode)

» Slave select mode (Slave mode only)

Step 1. CPU

Data to transmit should be written to the buffejiseer SSPBUF-.
Immediately after that, if the SP1 module operatesiaster mode, '
the microcontroller will automatically perform tif@lowing steps

2, 3 and 4. If the SPI module operates as Slagemibrocontroller
will not perform these steps until the SCK pin dé&declock signal. ‘ SSPBUF

Step 2. SSPBUF

This data is now moved to the SSPSR register an&8PBUF ‘
register is not cleared.

SSPSR

111

Step 3.

Synchronized with clock signal, this data is shifte the E> SSPSR E>

output pin (MSB bit first) while the register is
simultaneously being filled with bits through ingait. In %

Master mode, the microcontroller itself generateslg
while the Slave mode uses external clock (pin SCK).

Step 4.

The SSPSR register is full once the 8 bits of Hatze
been received. It is indicated by setting the B& an SSPBUF

SSPIF bits. The received data (that byte) is |
automatically moved from the SSPSR register to th ﬁ _'“g)”_
SSPBUF register. Since data transfer via serial - BF o
communication is performed automatically, the oést SSPSR

the program is normally executed while data transfi -+ SSPIF

is in progress. In that case, the function of tB€ &
bit is to generate interrupt when one byte transiorsis completed.

Step 5. CPU

At last, the data stored in the SSPBUF registegasly for use and ﬁ
moved to any register available.

SSPBUF

12C mode

I2C mode [nter IC Bug is especially suitable when the microcontrolled antegrated circuit
which the microcontroller should exchange data \aith within the same device. It is commonly
about another microcontrollers or specialized, phadegrated circuits belonging to the new
generation of so called smart peripheral componénemories, temperature sensors, real-time
clocks etc.)

Similar to serial communication in SPI mode, datnsfer in 12C mode is synchronous and

bidirectional. This time only two pins are used #ata transfer. These are the SDA (Serial Data)
and SCL (Serial Clock) pins. The user must congilmese pins as inputs or outputs through the
TRISC bits.

Perhaps it is not directly visible. By observingtmaular rules (protocols), this mode enables up to
122 different components to be simultaneously cotetein a simple way by using only two
valuable 1/0 pins. Briefly, everything works asléols: Clock - necessary to synchronize the
operation of both devices is always generated bstenalevice (microcontroller) and its frequency
directly affects baud rate. There are protocolevatig maximum 3,4 MHz clock frequency (so
called high-speed 12C bus), but the clock frequesfayne most frequently used protocol is limited
to 100 KHz. There is no limit in case of minimatduency.

When master and slave components are synchronizéitelxlock, every data exchange is always
initialized by master. Once the MSSP module has le®bled, it waits for a Start condition to
occur. First master device sends the START biti¢lagro) through the SDA pin, then 7-bit
address of the selected slave device and finadlybthwhich requires data write (0) or read (1) to

112

that device. Accordingly, following the start conain, the eight bits are shifted into the SSPSR
register. All slave devices share the same trarssomdine and all will simultaneously receive the
first byte, but only one of them has the addressatch.

e ——— Address 2
- L3 P SDA

SCL

Slave Slave Slave

Address 1 Address 2 Address 3

Once the first byte has been sent (only 8-bit daéatransmitted), master goes into receive mode
and waits for acknowledgment from the receive devitat address match has occurred. If the
slave device sends acknowledge data bit (1), datsfer will be continued until the master device
(microcontroller) sends the Stop bit.

This is the simplest explanation of how two compudsecommunicate. If needed, this
microcontroller is able to control more complicagiation when 1024 different components (10-
bit address) shared by several different masteicds\are connected. Such devices are rarely used
in practice and there is no need to discuss thegreater length.

snn-i 6/5/43]21]0] | [BYTE

\ m} l .ﬂt:kncwle-dgt

Data Bit (1)

—_—7 |
DATA n l

l
Acknowledge i
Data Bit “} STOP bit “/

START bit (0) RW |p = WRITE

1= READ

JUUvuuruirviuuruaruuauug U [UUUUUUUULIT
| ADDRESS| || BYTE1 || BYTE2 || BYTE3 || || BYTEn |||
Data Transfer Start Data Transfer End

Figure below shows the block diagram of the MSSHEut®in 12C mode.

113

MCSU
< &

SSPBUF '
T

:I :F P
‘ Msb Lsb
[
SDA pin ”

~

Address
Detect

SSPADD '

START and STOP
Bits Detect

The MSSP module uses six registers for 12C oparaBome of them are shown in figure above:

SSPCON
SSPCON2
SSPSTAT
SSPBUF
SSPSR
SSPADD

114

SSPSTAT Register

 SMP_| CKE | DA | P | S | RW | UA | BF

Legend

RW Readable/Writable bit
R Readable bit
(D) After reset, bit is cleared

SMP Sample bit

SPI master mode - This bit determines input dagseh
* 1- Logic state is read at end of data output time.
* 0 - Logic state is read in the middle of data otitpue.

SPI slave mode This bit must be cleared when Sidad in Slave mode.
I2C mode (master or slave)

* 1 - Slew rate control disabled for standard speedar{100kHz).
* 0 - Slew rate control enabled for high speed md@eK Hz).

CKE - Clock Edge Select bitselects synchronization mode.
CKP =0:

* 1 - Data is transmitted on rising edge of clockspul0 - 1).
* 0 - Data is transmitted on falling edge of clockseu1 - 0).

CKP =1:

» 1 - Data is transmitted on falling edge of clockseu - 0).
* 0 - Data is transmitted on rising edge of clockspu - 1).

D/A - Data/Address bitis used in 12C mode only.

» 1 - Indicates that the last byte received or tratisthwas data.
* 0 - Indicates that the last byte received or tratisthwas address.

P - Stop bitis used in 12C mode only.

e 1-STOP bit was detected last.
e 0 - STOP bit was not detected last.

S - Start bitis used in 12C mode only.

e 1 -START bhit was detected last.
e 0 - START bit was not detected last.

115

R/W - Read Write bit is used in 12C mode only. This bit holds the R/Witformation following
the last address match. This bit is only valid friti@ address match to the next Start bit, Stoprbit
not ACK bit.

In 12C slave mode

« 1 - Data read.
* 0O - Data write.

In 12C master mode

e 1 -Transmitis in progress.
* 0 - Transmit is not in progress.

UA - Update Address bitis used in 10-bit I2C mode only.

e 1 -Indicates that it is necessary to update tlkeesd in the SSPADD register.
* 0 - Address in the SSPADD register is correct aneschot need to be updated.

BF Buffer Full Status bit

During data receive (in SPI1 and 12C modes)
* 1 - Receive complete. The SSPBUF register is full.
* 0 - Receive not complete. The SSPBUF register jgtym

During data transmit (in 12C mode only)

e 1 - Data transmit in progress (does not includebiteeACK and STOP).
* 0 - Data transmit complete (does not include the ACK and STOP).

116

SSPCON Register

| WCOL | SSPOV | SSPEN | CKP_[SSPM3 | SSPM2 | SSPM1 | SSPMO_

Legend

RIW Readable/Writable bit
(0) After reset, bit is cleared

WCOL Write Collision Detect bit

* 1 - Collision detected. A write to the SSPBUF regjiswas attempted while the 12C
conditions were not valid for a transmission tatsta

0 - No collision.
SSPOV Receive Overflow Indicator bit

* 1 - A new byte is received while the SSPSR registidlr holds the previous data. Since
there is no space for new data receive, one oéttves bytes must be cleared. In this case,
data in SSPSR is lost.

* 0 - Serial data is correctly received.

SSPEN - Synchronous Serial Port Enable bitletermines the microcontroller pins function and
initializes MSSP module:

In SPI mode
* 1 - Enables MSSP module and configures pins SCK),S®DI and SS as the source of the
serial port pins.
* 0 - Disables MSSP module and configures thesegsn&O port pins.

In 12C mode
* 1 - Enables MSSP module and configures pins SDAS@H as the source of the serial
port pins.

* 0 - Disables MSSP module and configures thesegsn& port pins.
CKP - Clock Polarity Select bitis not used in I2C master mode.

In SPI mode
» 1 - Idle state for clock is a high level.
* O - Idle state for clock is a low level.

In 12C slave mode
* 1 - Enables clock.
* 0 - Holds clock low. Used to provide more time diata stabilization.

117

SSPM3-SSPMO - Synchronous Serial Port Mode Selecithh SSP mode is determined by
combining these bits:

SSPM3 SSPM2 SSPM1 SSPMO Mode

0 0 0 0 SPI master mode, clock = Fosc/4

SPI master mode, clock = Fosc/16

SPI master mode, clock = Fosc/64

SPI master mode, clock = (output TMR)/2

SPI slave mode, SS pin control enabled

SPI slave mode, SS pin control disabled, SS carsbé as
I/O pin

12C slave mode, 7-bit address used

I12C slave mode, 10-bit address used

I2C master mode, clock = Fosc / [4(SSPAD+1)

Mask used in 12C slave mode

Not used

12C controlled master mode

Not used

Not used

12C slave mode, 7-bit address used,START and STiF b
enable interrupt

R PP R RPRPRPRPRP OO O OoOOlO
P PP OOCOOFRPF P L OOO
P OO R, P OO RFR|IFkF O OlFr Fr o
O roOor oror o r | orlor

I12C slave mode, 10-bit address used,START and S3i8P
enable interrupt

SSPCONZ2 Register

GCEN_|ACKSTAT| ACKDT | ACKEN | RCEN | PEN | RSEN | SEN |

Legend

RW Readable/Writable bit
R Readable bit
(D) After reset, bit is cleared

GCEN - General Call Enable bit
In 12C slave mode only

* 1 - Enables interrupt when a general call addi@38Qh) is received in the SSPSR.
* 0 - General call address disabled.

118

ACKSTAT - Acknowledge Status bit

In 12C Master Transmit mode only
* 1 - Acknowledge was not received from slave.
* 0 - Acknowledge was received from slave.

ACKDT - Acknowledge data bit

In I2C Master Receive mode only
* 1 - Not Acknowledge
* 0 - Acknowledge

ACKEN - Acknowledge condition Enable bit

In 12C Master Receive mode
* 1 - Initiate acknowledge condition on SDA and SGhspand transmit ACKDT data bit. It
is automatically cleared by hardware.
* 0 - Acknowledge condition is not initiated.

RCEN - Receive Enable bit

In 12C Master mode only
1 - Enables data receive in 12C mode.
* 0 - Receive disabled.

PEN - STOP condition Enable bit

In 12C Master mode only
* 1 - Initiates STOP condition on pins SDA and SCliteAvards, this bit is automatically
cleared by hardware.
» 0 - STOP condition is not initiated.

RSEN - Repeated START Condition Enabled bit

In 12C master mode only
* 1 - Initiates START condition on pins SDA and S@lfterwards, this bit is automatically
cleared by hardware.
* 0 - Repeated START condition is not initiated.

SEN - START Condition Enabled/Stretch Enabled bit

In 12C Master mode only
* 1 - Initiate START condition on pins SDA and SCLit&xwards, this bit is automatically
cleared by hardware.
* 0 - START condition is not initiated.

12C in Master Mode

The most common case is when the microcontrolleratps as a master and peripheral component
as a slave. That is why this book covers exactly thode. It is also considered that address
consists of 7 bits and device contains only ongaamntroller (one master device).

119

In order to enable MSSP module in this mode, meisessary to do the following:

Set baud rate (SSPADD register), turn off slew redatrol (by setting the SMP bit of the

SSPSTAT register) and select master mode (SSPCQister. After the preparation has been
finished and module has been enabled (SSPCONeegiSEPEN bit), one should wait for internal
electronics to signalize that everything is reamtydata transmission, i.e. the SSPIF bit of thelPIR
register is set.

This bit should be cleared by software and aftet tthe microcontroller is ready to start
“communication” with peripherals.

SSPADD x| x| x| x|x|x|x| v’ Baud Rate
SSPSTAT |1 V" Slew Rate
SSPCON 1000 v Master Mode
SSPCON 1 v" Enable

Data Transmission in 12C Master Mode

Each clock condition on the SDA pin starts

with logic zero (0) which appears upo START
setting the SEN bit of the SSPCON SSPCON2 L’—LLIJ—LILI v Sequence
register. Even enabled, the microcontroll

has to wait a certain time before it stai "
communication. It is so called Sta PIR1 | 1 _,LR._

condition during which internal preparatior

and checks are performed. If all conditions

are met, the SSPIF bit of the PIR1 is set and datesfer starts as soon as the SSPBUF register is
loaded.

120

Since maximum 112
integrated circuits may

simultaneously share th @
same transmission line, th SDA pin

first data byte must contair gspBUF [0x//x/x/x/xlx| » =7

address which matches onl | ‘ ‘ ‘ l ‘ | ‘ | | _..J_|_|_|_|_|_
one slave device. Eacl
component has its owr
address listed in the prope SSPCON2 HO[J | l I l |“ ‘:ﬁ‘— ‘Acknewledge
data sheet. The eighth bit ¢

the first data byte specifie:

Slave Address

direction of data Data

transmission, i.e.whether th

microcontroller is to send ol @

receive data. In this case, it | SDA pin

all about data receive and th ~ SSPBUF \x\x]x\x|x\x|x|x|—.4;ﬁ N
eighth bit therefore is logic —Ju UL
zero (0).

sspcoNz [o] | | | || I*—ﬁf‘___

When address match occur
the microcontroller has to
wait for the acknowledge data bit. The slave dewacknowledges address match by clearing the
ASKSTAT bit of the SSPCON2 register. If the matebperly occurred, all bytes representing data
are transmitted in the same way.

Data transmission ends by setting the SEN bit @ 3SBPCON2 register. So called STOP condition
occurs, which enables the SDA pin to receive puatsadition: Start - Address - Acknowledge -
Data - AcknowledgeData - Acknowledge - Stop!

Data Reception in I2C Master Mode

Preparations for data reception are similar toehios data transmission, with exception that the
last bit of the first sent byte (containing addjasdogic one (1). It specifies that master expdot
receive data from addressed slave device. Withrdetgathe microcontroller, the following events
occur:

After internal preparations are finished and STARMTIs set, slave device starts sending one byte
at a time. These bytes are stored in the serisddteggSSPSR. Each data is, after receiving the last
eighth bit, loaded to the SSPBUF register from wheican be read. By reading this register, the
acknowledge bit is automatically sent, which methed master device is ready to receive new
data.

121

At the end, similar to data transmission, datapgoa ends by setting the STOP bit:

Slave Address

SSPBUF '1xxxxxxx|—- . JU _||_

SSPCON2 | 'u'| | |] I*_ﬁi]
P Acknowledge

SDA pin

SSPSR |22 |x|x|x| «—
(XXl x x] ﬂjF_m

SSPBUF |x|x x|x x xlx xl —-»41’? _IM

Data

Start - Address - Acknowledge - Data - AcknowledgeData - Acknowledge - Stop!

In this pulse condition, the acknowledge bit istgerslave device.

Baud Rate Generator

In order to synchronize data transmission, all &vdaking place on the SDA pin must be
synchronized with the clock generated in mastericgevThis clock is generated by a simple
oscillator whose frequency depends on the microotlet’'s main oscillator frequency, value
written to the SSPADD register and the current@Bdle.

122

The clock frequency of the mode described in tloigkbdepends on selected quartz crystal and the
SPADD register. The formula used to calculate ghewn in figure below.

Frequency

X|x|x|x K|K|K|SSPADD

SCL pin]
Oscillator [—
JUUUUUl |> —
Fosc
Baud Rate (frequency): I _—
| | | 1000|SSPCON
Fosc
4(SSPADD+1) Mode

Useful notes ...

When the microcontroller communicates with perigharomponents, it may happen that data
transfer fails for some reason. In that case,ié@®mmended to check the state of some bits which
can clarify the problem. In practice, the statetluése bits is checked by executing a short
subroutine after each byte transmission and remegtist in case).

WCOL (SPCON,7) - If you try to write a new data to the SSPBUFistgy while another data
transmit/receive is in progress, the WCOL bit widl set and the contents of the SSPBUF register
remains unchanged. Write does not occur. After thes WCOL bit must be cleared in software.

BF (SSPSTAT,0)- In transmit mode, this bit is set when the CPtites to the SSPBUF register
and remains set until the byte in serial formaghsted from the SSPSR register. In receive mode,
this bit is set when data or address is loadechéo SSPBUF register. It is cleared when the
SSPBUF register is read.

SSPOV (SSPCON,6} In receive mode, this bit is set when a new lyteceived by the SSPSR
register via serial communication, whereas theiptsly received data has not been read from the
SSPBUF register yet.

SDA and SCL Pins- When SPP module is enabled, these pins turnsOpen Drain outputs. It

means that these pins must be connected to theamssivhich at the other end are connected to
positive power supply.

123

- VCC

\\\\ SDA pm

In Short:
In order to establish serial communication in I2Gdm®, the following should be done:

Setting Module and Sending Address:

* Value to determine baud rate should be writtetnéSSPADD register.

* SlewRate control should be turned off by settirgg $MP bit of the SSPSTAT register.

* In order to select Master mode, binary value 10@fukl be written to the SSPM3-SSPMO
bits of the SSPCONL1 register.

* The SEN bit of the SSPCONZ2 register should beSEART condition).

* The SSPIF bit is automatically set at the end cABT condition when the module is ready
to operate. It should be cleared.

» Slave address should be written to the SSPBUFtezgis

* When the byte is sent, the SSPIF bit (interrupgusomatically set upon the acknowledge
bit has been received from Slave device.

Data Transmit:
» Data is to be send should be written to the SSPgIster.
* When the byte is sent, the SSPIF bit (interrupgutomatically set upon the acknowledge
bit has been received from Slave device.
* In order to inform Slave device that transmit ignpbete, STOP condition should be
initiated by setting the PEN bit of the SSPCON st

Data Receive:

* In order to enable receive the RSEN bit of the SSRZregister should be set.

* The SSPIF bit signalizes data receive. When dataad from the SSPBUF register, the
ACKEN bit of the SSPCONZ2 register should be sairger to enable sending acknowledge
bit.

* In order to inform Slave device that transmit ianpbete, STOP condition should be
initiated by setting the PEN bit of the SSPCON st

124

Chapter 7: Analog Modules

Apart from a large number of digital I/O lines, tRéC16F887 contains 14 analog inputs. They
enable microcontroller to recognize not only whetsmme pin is driven to logic zero or one (0 or
+5V), but to precisely measure its voltage and eonit into numerical value, i.e. digital format.
The whole procedure takes place in A/D convertedutewhich has the following features:

» The converter generates a 10-bit binary result gusihe method of successive
approximation and stores the conversion results the ADC registers (ADRESL and
ADRESH).

» There are 14 separate analog inputs.

« The A/D converter allows conversion of an analoguinsignal to a 10-bit binary
representation of that signal.

* By selecting voltage references Vref- and Vref+e tninimal resolution or quality of
conversion may be adjusted to various needs.

ADC Mode and Registers

Even though the use of A/D converter seems to Ibg e@mplicated, it is basically very simple,
simpler than using timers and serial communicathmdule, anyway.

AVdd VCFGD
Vref+
=
Wref-
o, L& :
| -
." Avss

M VCFG1

= [ttea T
\ £

| ADRESH || ADRESL |

GO/DONE

ADON -

.-'--..

il e e T o T e O

GND

|

| |cHs3|[cHs2||cHs1]|[cHso]
ADCON1 Register

Fig. 7-1 ADC Mode and Registers

125

The module is under control of the bits of fouriségys:

* ADRESH - Contains high byte of conversion result
* ADRESL - Contains low byte of conversion result
« ADCONO - Control register 0

 ADCONL1 Control register 1

ADRESH and ADRESL Registers

Upon converting an analog value into a digital aite, result of 10-bit A/D conversion will be
stored in these two registers. In order to deah whis value easier, it can appear in two formats-
left justified and right justified. The ADFM bit dhe ADCON1 register determines the format of
conversion result (see figure). In case the A/Dveoter is not used, these registers may be used as
general-purpose registers.

ﬁDRESH ADRESL
0) (0 @ @ | “Right justified”
7T 6 5 4 3
10 - bit result (ADFM=1)
hDRESH ADRESL
(T T LT L Jololiif] ot issssee
10 - bit result (ADFM=0)

Fig. 7-2 ADRESH and ADRESL Registers
A/D Acquisition Requirements

For the ADC to meet its specified accuracy, it ésessary to provide certain time delay between
selecting specific analog input and measuremeaelf.itfhat time is called “acquisition time” and
mainly depends on the source impedance. There egaation used for accurate calculating this
time which in the worst case amounts to approxiip&@usS. Briefly, after selecting (or changing)
the analog input and before starting conversiaos itecessary to provide at least 20uS time delay
to enable the ACD maximal conversion accuracy.

ADC Clock Period

A time needed to complete one bit conversion isndef as TAD. The required TAD must be at
least 1,6 uS. One full 10-bit A/D conversion isialbnger than expected and amounts 11 TAD
periods. However, since both the conversion clogquency and source are determined by
software, one of available combination of bits AOC&1d ADCSO should be selected before
voltage measurement on some analog input staresellbits are stored in the ADCONO register.

126

ADC Clock ADCS1 ADCSO Device Frequency (Fosc)

Source 20 Mhz 8 Mhz 4 Mhz 1 Mhz
Fosc/2 0 0 100 nS 250 nS 500 n$ 2uS
Fosc/8 0 1 400 nS 1uS 2uS 8 uS
Fosc/32 1 0 1.6 uS 4 uS 8uS 32 uS
Frc 1 1 2-6uS 2-6uS 2-6UuUS 2-6uUS

Any change in the system clock frequency will afféte ADC clock frequency, which may
adversely affect the ADC result. Device frequenbgracteristics are shown in the table above.
The values in the shaded cells are outside of recemded range.

How to Use A/D Converter?

In order to enable A/D converter to run withoutlgeams as well as to avoid unexpected results, it
is necessary to consider the following:

» A/D converter does not differ between digital amélag voltages. In order to avoid errors
in measurement or some chip damage to, the pingddie con figured as analog inputs
before conversion starts. The bits used for that gmse are stored in the TRIS and
ANSELH registers.

* When the port with analog inputs marked as CHO-CIs18ad, the corresponding bits will
be driven to logic zero (0).

* Roughly speaking, voltage measurement in convestbased on comparing input voltage
with internal scale which has 1024 marks (210=10Z#¢ low est scale mark stands for
the Vref- voltage, while the highest mark standstlie Vref+ voltage. Figure below shows
selectable referent voltages and their minimumraagimum values as well.

VCC + 0.3V
vec o QEEETD

w

Vrer+ |4
VCC - 2.5V 0 3
+ 2
i < — Analog Input
VHEF - 11 Vin L‘Vlf Voltage Vin
GND - 0.3V - GND (0v)

x
| GND - 0.3V

Fig. 7-3 How to Use A/D Converter

127

ADCONO Register

| ADCS1 | ADCSO | CHS3 | CHS2 | CHS1 | CHSO |GOIDONE| ADON |

Legend

RMW Readable/Writable bit
(0) After reset, bit is cleared

ADCS1, ADCSO - A/D Conversion Clock Select bitselect clock frequency used internal
synchronization of A/D converter. It also affectgaion of conversion.

ADCS1 ADCS2 Clock
0 0 Fosc/2
0 1 Fosc/8
1 0 Fosc/32
1 1 RC *

» Clock is generated by internal oscillator whiclbislt in converter.
CHS3-CHSO - Analog Channel Select bitselect a pin or an analog channel for con versien,
voltage measurement:

CHS3 | CHS2 CHS1 CHSO Channel Pin
0 0 0 0 0 RAO/ANO
0 0 0 1 1 RA1/AN1
0 0 1 0 2 RA2/AN2
0 0 1 1 3 RA3/AN3
0 1 0 0 4 RA5/AN4
0 1 0 1 5 REO/ANS
0 1 1 0 6 RE1/AN6
0 1 1 1 7 RE2/AN7
1 0 0 0 8 RB2/AN8
1 0 0 1 9 RB3/AN9
1 0 1 0 10 RB1/AN1(
1 0 1 1 11 RB4/AN11
1 1 0 0 12 RBO/AN12
1 1 0 1 13 RB5/AN13
1 1 1 0 CVref
1 1 1 1 Vref = 0.6V

128

GO/DONE - A/D Conversion Status bitdetermines current status of conversion:
* 1-A/D conversion is in progress.

* 0 - A/D conversion is complete. This bit is autoitaty cleared by hardware when the
A/D conversion is completed.

ADON - A/D On bit enables A/D converter.
« 1 - A/D converter is enabled.
e 0 - A/D converter is disabled.

ADCONL1 Register

RIW (0} RW(0) RW(0) Features
ADCON1 | ADFM | - | VCFG1 |VCFGO | - . - - | Bitname
Bit 7 Bit& Bits Bit4 Bit3 Bit2 Bit1 Bit0

Legend

Bit is unimlemented
RW Readable/Writable bit
{0) After reset, bit is cleared

ADFM - A/D Result Format Select bit
* 1 - Conversion result right justified. Six mostrsfgcant bits of the ADRESLH are not
used.
* 0 - Conversion result left justified. Six leastrgfgcant bits of the ADRESL are not used.

VCFG1 - Voltage Referencebit selects negative voltage reference source ateddr A/D
converter operating.

* 1 - Negative voltage reference is applied on thef\uin.
» 0 - Voltage power supply Vss is used as negatiViege reference source.

VCFGO - Voltage Reference bitselects positive voltage reference source neededAfD
converter operating.

» 1 - Positive voltage reference is applied on thef¥pin.
* 0 - Voltage power supply Vdd is used as positivikage reference source.

In Short:
In order to measure voltage on an input pin by Addverter the following should be done:
Step 1- Configuring port:
» Write logic one (1) to the corresponding bit of RIS register to configure it as input.
. Write logic one (1) to the corresponding bit of BMESEL register to configure it as analog
input.

Step 2- Configuring ADC module:

» Configure voltage reference in the ADCONL1 register.
129

» Select ADC conversion clock in the ADCONO register.

» Select one of input channels CHO-CH13 of the ADCQO&{fister.

* Select data format using the ADFM bit of the ADCOigjister.

» Enable A/D converter by setting the ADON bit of WBCONO register.

Step 3- Configuring ADC interrupt (optionally):

e Clear the ADIF bit.
* Set the ADIE, PEIE and GIE hits.

Step 4- Wait for the required acquisition time (apprositely 20uS) to pass.
Step 5- Start conversion by setting the GO/DONE bitred ADCONO register.

Step 6- Wait for ADC conversion to complete.

* It is necessary to check in program loop whether@®/DONE pin is cleared or wait for
an A/D interrupt (must be previously enabled).

Step 7- Read ADC results:
* Read the ADRESH and ADRESL registers.
Analog Comparator

In addition to A/D converter, there is one more miledwhich until quite recently has been

embedded only in integrated circuits belongingdacalled analog electronics. Owing to the fact
that it is hardly possible to find any more compéxomatic device which in some way does not
use these circuits, two high quality comparatom@lwith additional electronics are integrated
into the microcontroller and connected to its pins.

How does a comparator operate? Basically, analogacator is an amplifier which compares the
magnitude of voltages at two inputs. Looking atgtsysical features, it has two inputs and one
output. Depending on which input has higher voltégealog value), a logic zero (0) or logic one
(1) (digital values) will appear on its output:

F 3

Vin-|

ot

ouT

Out &

L J

Fig. 7-6 Analog Comparator

130

* When the analog voltage at Vin- is higher thanahalog voltage at Vin+, the output of the
comparator is a digital low level.

* When the analog voltage at Vin+ is higher thanahalog voltage at Vin-, the output of the
comparator is a digital high level.

The PIC16F887 microcontroller has two such voltegeparators whose inputs are connected to
I/O pins RAO-RAS3, whereas the outputs are conneiddte pins RA4 and RAS. In addition there
is also a referent voltage internal source on thgif , but it will be discussed later.

These two circuits are under control of the bitsesd in the following registers:

CM1CONOQO is in control of comparator C1,
CM2CONQO is in control of comparator C2;
CM2CONL1 is in control of comparator C2;

Voltage Reference Internal Source

One of two analog voltages provided on the compaitaputs is usually stable and unchangeable.
Because of those features it is called “voltageresfce”(Vref). To generate it, both external and
special internal voltage source can be used. Aicting voltage source, Vref is derived from it
by means of ladder network consisting of 16 ressstohich form voltage divider. The voltage

source is selectable through both ends of thatidithrough the VRSS bit of the VRCON register.

In addition, the voltage fraction provided by résidadder network may be selected through the
bits VR0O-VR3 and used as voltage reference. Seeefigelow.

VREN

C1RSEL
veld C2RSEL X 16 Bvee
0 : :

' A
: & A
S : 8R R R R R R _@7
|: Beyag o 1 F:I—f-{_'::__:-?-{_'_':__:-?—:—"—ng‘:\
. P 8R

VROE - [
[& |
|: S] S] S] S] \rnsa Vss

Vref = 0.6V '
Yy Y

VR3
CVref

Vref+

Vref-

CVref

VR2
VR1
VRO

Fig. 7-7 VREF

131

The comparator voltage reference has 2 ranges i#éthvoltage levels in each range. Range
selection is controlled by the VRR bit of the VRC@&gjister. The selected voltage reference may
be output to the RA2/AN2 pin.

Even though the main idea was to obtain varyingaga reference for the operation of analog
modules, a simple A/D converter is obtained in thay too. This converter is very useful in some
situations.

It's operation is under control of the VRCON regist

Comparators and Interrupt Operation

The flag bit CMIF of the register PIR is set on vehange of logic state on any comparator’s
output. The same changes also cause an interriln@ fbllowing bits are set:

CMIE bit of the PIE register
PEIE bit of the INTCON register
GIE bit of the INTCON register

If interrupt is enabled, any change on the compéasabutput can wake up the microcontroller
from sleep mod# it is setup in that mode.

CM1CONO Register

| C1ON | C10UT | C10E [C1POL | - | GIR | GICH1 | GIGHD |

Legend

- Bit is unimplemented
RMW Readable/Writable bit

R Readable bit

(0} After reset, bit is cleared

Bits of this register are in control of the compgaraCl. It mainly affects configuration of its
inputs. To understand it better, look at the figbetow which shows only a part of electronics
directly affected by the bits of this register.

132

|C1CH1|[C1CHO|

| c12IND-

C12IN1-
| C12IN2Z-

Comparator C1

| C12IN3- :
| C1Vin-
\ C1IN+ [
C1Vref L
S vret=0.6v — _._"';""--u ! C1vint
CVref —— | ;
' C1R

C1RSEL H

C1ON - Comparator C1 Enable bit enables comparatoC1.

e 1 - Comparator C1 is enabled.
* 0 - Comparator C1 is disabled.

C10UT - Comparator C1 Output bit is comparator C1 output bit.

If CLAPOL = 1 (comparator output is inverted)
* 1 - Analog voltage at C1Vin+ is lower than analaitage at C1Vin-.
* 0 - Analog voltage at C1Vin+ is higher than analogage at C1Vin-.

If CLPOL = 0 (comparator output is non-inverted)
» 1 - Analog voltage at C1Vin+ is higher than analojage at C1Vin-.
* 0 - Analog voltage at C1Vin+ is lower than anala@jtage at C1Vin-.

C10E Comparator C1 Output Enable bit.

e 1 - Comparator CLOUT output is connected to the TLQin.*
* 0 - Comparator output is internal only.

* In order to enable the C1OUT bit to be presenttanpin, two conditions must be met: C1ON =
1 (comparator must be on) and the corresponding TiRI= 0 (pin must be configured as output).

C1POL - Comparator C1 Output Polarity Select bitenables comparator C1 out put state to be
inverted.

e 1 - Comparator C1 output is inverted.
e 0 - Comparator C1 output is non-inverted.

C1R - Comparator C1 Reference Select bit
* 1 - Non-inverting input C1Vin+ is connected to mefgce voltage C1Vref.
e 0 - Non-inverting input C1Vin+ is connected to tB&IN+ pin.

133

C1CH1, C1CHO - Comparator C1 Channel Select bit

C1CH1 C1CHO Comparator C1Vin- input
0 0 Input C1Vin- is connected to the C12INO- pin
0 1 Input C1Vin- is connected to the C12IN1- pin
1 0 Input C1Vin- is connected to the C12IN2- pin
1 1 Input C1Vin- is connected to the C12IN3- pin

CM2CONO Register

| C20N_| C20UT | C20E | C2POL | - | C2R | C2CH1 | C2CHO |

Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

{0y After reset, bit is cleared

Bits of this register are in control of compara@i#. Similar to the previous case, the figure shows
simplified schematic of the circuit affected by thies of this register.
Pins
7N
/ | |[c2cH1][c2cHo]

| Comparator C2
|| C12INO- [
‘ C12IN1- [
I\G1EIN2- [

C12IN3- [

\

\eamet

o o C2Vin+
{ Vref=0.6V f ' oy
CVref —{—<
C2R

134

C20N - Comparator C2 Enable bitenables comparator C2.

e 1 - Comparator C2 is enabled.
e 0 - Comparator C2 is disabled.

C20UT - Comparator C2 Output bit is comparator C2 output.

If C2POL = 1 (comparator output inverted)
* 1 - Analog voltage at C1Vin+ is lower than anal@jtage at C1Vin-.
* 0 - Analog voltage at C1Vin+ is higher than analogjage at C1Vin-.

If C2POL = 0 (comparator output non-inverted)
* 1 - Analog voltage at C1Vin+ is higher than analogjage at C1Vin-.
* 0 - Analog voltage at C1Vin+ is lower than anala@jtiage at C1Vin-.

C20E - Comparator C20utput Enable bit

e 1 - Comparator C20UT output is connected to the TRQin.*
* 0 - Comparator output is internal only.

* In order to enable the C20UT bit to be presenthanpin, two conditions must be met: C20N =
1 (comparator must be on) and the correspondin@ TRI= 0 (pin must be configured as output).

C2POL - Comparator C2 Output Polarity Select bit enables comparator C2 out put state to be
inverted.

e 1 - Comparator C2 output is inverted.
* 0 - Comparator C2 output is non-inverted.

C2R - Comparator C2 Reference Select bit

* 1 - Non-inverting input C2Vin+ is connected to mefgce voltage C2Vref.
e 0 - Non-inverting input C2Vin+ is connected to tB2IN+ pin.

C2CH1, C2CHO Comparator C2 Channel Select bit

C2CH1 C2CHO Comparator C2Vin- input
0 0 Input C2Vin- is connected to the C12INO- pin
0 1 Input C2Vin- is connected to the C12IN1- pin
1 0 Input C2Vin- is connected to the C12IN2- pin
1 1 Input C2Vin- is connected to the C12IN3- pin

CM2CONL1 Register

135

| MC10UT| MC20UT|C1RSEL |C2RSEL| - | - | T1GSS [C2SYNC|

Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

(0) After reset, bit is cleared
(1) After reset, bit is set

MC1OUT Mirror Copy of C1OUT bit
MC20OUT Mirror Copy of C20UT bit
C1RSEL Comparator C1 Reference Select bit
* 1 - Selectable voltage CVref is used in voltagenerice C1Vref source.
* 0 - Fixed voltage reference 0.6V is used in voltegjerence C1Vref source.
C2RSEL - Comparator C2 Reference Select bit

* 1 - Selectable voltage CVref is used in voltagenesice C2Vref source.
* 0 - Fixed voltage reference 0.6V is used in voltegference C2Vref source.

T1GSS - Timerl Gate Source Select bit

e 1-Timer Tlgate source is T1G.
e 0 - Timer Tlgate source is comparator SYNCC20UT.

C2SYNC - Comparator C2 Output Synchronization bit

e 1 - Comparator C2 output is synchronized to falkige of Timer TMR1 clock.
* 0 - Comparator output is asynchronous signal.

VRCON Register

| VREN | VROE | VRR | VRSS | VR3 | VR2 | VR1 | VRO |

Legend

RW Readable/Writable bit
(0) After reset, bit is cleared

VREN Comparator C1 Voltage Reference Enable bit

* 1 - Voltage reference CVref source is powered on.
* 0 - Voltage reference CVref source is powered off.

136

VROE Comparator C2 Voltage Reference Enable bit

» 1 -Voltage reference CVref is connected to the pin
* 0 - Voltage reference CVref is disconnected froe .

VRR - CVref Range Selection bit

* 1 - Voltage reference source is set to low range.
* 0 - Voltage reference source is set to high range.

VRSS - Comparator Vref Range selection bit

* 1 - Voltage reference source is in the range of¥te Vref-.
* 0 - Voltage reference source is in the range of Vdds (power supply voltage).

VR3 - VRO CVref Value Selection

If VRR =1 (low range)

Voltage reference is calculated using the formGMref = ([VR3:VRO0]/24)Vdd

If VRR = 0 (high range)

Voltage reference is calculated using the formGMref = Vdd/4 + ([VR3:VRO0]/32)Vvdd
In Short:

In order to properly use built in Comparatorssinecessary to do the following:

Step 1- Configuring module:

* In order to select the appropriate mode, bits ef rigisters CM1CONO and CM2CONO
should be configured. Interrupt should be disable@ny change of mode.

Step 2- Configuring internal voltage reference Vref smur(only when used). In the VRCON
register it is necessary to :

» Select one of two voltage ranges using the VRR bit.
» Configure necessary Vref using bits VR3 - VRO.

» Set the VROE bit if needed.

* Enable voltage Vref source by setting the VREN bit.

Formula used to calculate voltage reference:

VRR =1 (low range)
CVref = ([VR3:VRO0]/24)VLADDER

VRR = 0 (high range)
CVref = (VLADDER/4) + ([VR3:VRO]VLADDER/32)
Vladder = vdd or ([Vref+] - [Vref-]) or Vref+

137

Step 3- Starting operation:

* Enable interrupt by setting bits CMIE (PIE regi3té?EIE and GIE (both in the INTCON
register).

* Read bits C10UT and C20UT of the CMCON register.

* Read flag bit CMIF of the PIR register. After beisg, this bit must be cleared in software.

138

Chapter 8: Other MCU's Circuits

As seen in figure below, clock signal may be geteeréay one of two built in oscillators.

LF, XT, HS, RC, RCIO, EC mode

External Oscillator

HFINTOSC
& MHz

Pins

LFINTOSC

31 kHz

Internal Oscillator

Power-up Timer

Watchdog Timer

Fall-Safe Clock
Monitor

OSCCON Register Programmer
(Config word)

Fig. 8-1 Two built in oscillators

External oscillator is installed within the microcontroller and conteztto the OSC1 and OSC2
pins. It is called “external” because it reliesexternal circuitry for the clock signal and freqagn
stabilization, such as stand-alone oscillator, guarystal, ceramic resonator or resistor-capacitor
circuit. It can be stand-alone oscillator, quartgstal, ceramic resonator or resistor-capacitor
circuit. The oscillator mode is selected by bitdgfes sent during programming, so cal&ahfig
Word.

Internal oscillator consists of two separate, internal oscillators:

The HFINTOSC is a high-frequency internal osciltatavhich operates at 8MHz. The
microcontroller can use clock source generatebdadtftequency or after being divided in prescaler.

The LFINTOSC is a low-frequency internal oscillatanich operates at 31 kHz. Its clock sources
are used for watch-dog and power-up timer but it ba also used as a clock source for the
operation of entire microcontroller.

The system clock can be selected between extermadevnal clock sources via the System Clock
Select (SCS) bit of the OSCCON register.

139

OSCCON Regqister

The OSCCON register controls the system clock aeduency selection options. It contains the
following bits: frequency selection bits (IRCF2,GR1, IRCF0), frequency status bits (HTS, LTS),
system clock control bits (OSTA, SCS).

|- | IRCF2 | IRCF1 | IRCFO | OSTS | HTS | LTS | SCS

Legend

- Bit is unimplemented
RMW Readable/Writable bit

R Readable bit

(0} After reset, bit is cleared
{1} After reset, bit is set

IRCF2-0 - Internal Oscillator Frequency Select bits Combination of these three bits determines
the divider rate. Clock frequency of internal dscibr is also determined in that way.

IRCF2 IRCF1 IRCFO Frequency OSC.
1 1 1 8 MHz HFINTOSC
1 1 0 4 MHz HFINTOSC
1 0 1 2 MHz HFINTOSC
1 0 0 1 MHz HFINTOSC
0 1 1 500 kHz HFINTOSC
0 1 0 250 kHz HFINTOSC
0 0 1 125 kHz HFINTOSC
0 0 0 31 kHz LFINTOSC

OSTS - Oscillator Start-up Time-out Status bitindicates which clock source is currently in use.
This bit is readable only.

» 1 - External clock oscillator is in use.
* 0 - One of internal clock oscillators is in use (NFOSC or LFINTOSC).

HTS - HFINTOSC Status bit (8 MHz - 125 kHz) indicates whether high-frequennternal
oscillator operates in a stable way.

« 1-HFINTOSC is stable.
e 0-HFINTOSC is not stable.

LTS - LFINTOSC Stable bit (31 kHz) indicates whether low-frequency intermescillator
operates in a stable way.

e 1-LFINTOSC is stable.
e 0O-LFINTOSC is not stable.

140

SCS - System Clock Select bdetermines which oscillator is to be used as ekctource.

* 1 - Internal oscillator is used for system clock.
* 0 - External oscillator is used for system clock.

The oscillator mode is set by bits in Config Worldieh are written to the microcontroller memory
during programming.

External Clock Modes

In order to enable the external oscillator to ofeeed different speeds and use different components
for frequency stabilization, it can be configuredoperate in one of several modes. Mode selection

is performed after the program writing and comgilirFirst of all, it is necessary to activate
program on PC used for programming. In this case about PICflash program. Click on the
oscillator combox and select one option from thepeslown list. After that, the appropriate bits
will be set becoming in that way a part of sevesdes which together form Config Word.

During programming, the bytes of Config Word arétten to the microcontrollers ROM memory
and stored in special registers which are not albhdlto the user. On the basis of these bits, the
microcontroller “knows” what to do, although itnst explicitly specified in the (written) program.

HS

EC - RAE a3 1/0, RAT as CLEIN
INTOSCIO - RAB az 170, RAT az 10
INTOSC - RAG az CLEOUT, RAT az1/0
RCID - R4E a2 1/0, RAT as RC

RC - RAG as CLEOUT, RAT as RC

[mikroElektronika - PicFLASH [v7.07] with mikrolCD

File Device Buffer Windows USE About History
Corfigusakon Bite "ﬁf;w .
Code Probect
Oscillator Eﬁ -
= Hore ’ Read ” Write I
Watchdog Timer Enabled - 0000k - 1FFFR [AN)
Power Up Timer | Disabled - St Program Hemors | vty || mak |
Master Clear | Erabled - ‘Write Enable l Erase ” Reset I
Data EE Protect Dizabled - = ‘wiite pratection OIF
Brown Dut Detect | BOD Enabled - " UUOCh - DOFFh Fratected l—JL'm -
™ 0000k - O7FFh Protectsd
Int-Ext Switchover | Ensbled =
™ 0000k - OFFFh Protectsd
Fail-safe Clk. Monitor | Erabied - l Save HEX I
Low Yoltage Program Ensbled -
=1 Calbrai
In-Circuit Debugger | IC0 Disabied - L
Cal. ‘Word
Brown-out Reset Sel. zot to 4.0V -
) CODE EEPRCHM
|0 Locations
IFFF IFFF IFFF IFFF Clea [Options]
|
Program Memony See 8 K Devica Statuz: Idle Type Progress:
EEFROM Size: 256 Bytes Address: Oh Revision [e % |
Fle:
Dewice: PICIEFEET Cperation: None

141

External oscillator in EC mode

The external clock (EC) mode uses the system cbockce configured from external oscillator.
The frequency of this clock source is unlimited 20MHz).

This mode has the following advantages:

* The external clock source is connected to the OB@Ut and the OSC2 is available for
general purpose 1/0.

* It is possible to synchronize the operation of riierocontroller with the rest of on board
electronics.

* In this mode the microcontroller starts operatimgnediately after the power is on. There is
no delay required for frequency stabilization.

 Temporary stopping the external clock input has dffect of halting the device while
leaving all data intact. Upon restarting the exaéntock, the device resumes operation as if
nothing has happened.

External Oscillator

/
/
/

v Pin 0SC1 |

OSC. JUUUL

DC-20MHz

Pin OSC2

o

142

External oscillator in LP, XT or HS mode

The LP, XT and HS modes support the usage of iaterscillator for configuring clock source.
The frequency of this source is determined by quargstal or ceramic resonators connected to the
OSC1 and OSC2 pins. Depending on features of thponent in use, select one of the following
modes:

LP mode (Low Power) is used for low-frequency quartz caysinly. This mode is designed to
drive only 32.768 kHz crystals usually embeddeduartz watches. It is easy to recognize them by
small size and specific cylindrical shape. The eaticonsumption is the least of the three modes.

XT mode is used for intermediate-frequency quartz crystags to 8 MHz. The current
consumption is the medium of the three modes.

HS mode (High Speed) is used for high-frequency quartzstadg over 8 MHz. The current
consumption is the highest of the three modes.

LP, XT, HS mode

0SC1Pin |
20-30pF

JUTTE
=

L—' —— 0sc2Pin

GND | \

Quartz crystal

143

Ceramic resonators in XT or HS mode

Ceramic resonators are by their features similayuartz crystals. That is why they are connected
in the totally same way. Unlike quartz crystalgytrare cheaper and oscillators containing them
have a bit worse characteristics. They are usedléak frequencies ranging between 100 kHz and
20 MHz.

External oscillator in RC and RCIO mode

There are certainly many advantages in using elesfenfrequency stabilization, but sometimes
they are really not necessary. It is mostly enatinghoscillator operates at frequency not precisely
defined so that embedding of such expensive elesmaaans a waste of money. The simplest and
cheapest solution in these situations is to useresistor and one capacitor for the operation of
oscillator. There are two modes:

RC mode In RC mode, the RC circuit is -
connected to the OSC1 pin as shown in figu

The OSC2 pin outputs the RC oscillate =™ —
frequency divided by 4. This signal may ¢
used for calibration, synchronization or oth
application requirements.

20 pF J— ™
L

GHD OSCZ Pin _|

| - reset
u

RCIO mode. Similar to the previous case, th -
RC circuit is connected to the OSC1 pin. T
time, the available OSC2 pin is used s-wmx
20 pF J—
=

W

OEC1 Pin

additional general purpose 1/O pin.

!

DECZPin

In both cases, it is recommended to use : o
components as shown in figure.

The frequency of such oscillator is calculateu
according to the formula f = 1/T in which:

f = frequency [Hz]

T = R*C = time constant [s]

R = resistor resistanc@]

C = capacitor capacity [F]

144

Internal Clock Modes

The internal oscillator circuit consists of two aggte oscillators that can be selected as thersyste
clock source:

TheHFINTOSC oscillator is factory calibrated and operates MHz. Its frequency can be user-
adjusted via software using bits of the OSCTUNEsteg.

TheLFINTOSC oscillator is not factory calibrated and operate31kHz.

Similar to the external oscillator, the internakaran also operate in several modes. The mode is
selected in the same way as in case of externdladbsc using bits of the Config Word register. In
other words, everything is performed within PC waifte, immediately before program writing to
the microcontroller starts.

Internal oscillator in INTOSC mode

In this mode, the OSCL1 pin is available
as general purpose I/O while the OSCz
pin outputs selected internal oscillator 1o
frequency divided by 4.

05C1 Pin |

GSC2 Pln
I LI
Foscid
Internal oscillator in INTOSCIO mode
In this mode, both pins are available for gener
purpose I/O.
OS5C1Pin |
1o
O5C2 Pin
1o

Internal Oscillator Settings

The internal oscillator consists of two separateudts.

1. The high-frequency internal oscillator HFINTOSC connected to the postscaler (frequency
divider). It is factory calibrated and operate8kitHz. Using postscaler, this oscillator can output

clock sources at one of seven frequencies whichbeaselected via software using the IRCF2,
IRCF1 and IRCFO pins of the OSCCON register.

145

The HFINTOSC is enabled by selecting one of sevequencies (between 8 MHz and 125 kHz)
and setting the System Clock Source (SCS) bit ef@SCCON register afterwards. As seen in
figure below, everything is performed using bitstegd OSCCON register.

e
L
]
]
a
"
[=]
o

S o= — N — I T)
- T - R
o220

- |
OSCCON Register IRCF2 | IRCF1 | IRCFO) SCS

2. The low-frequency oscillator LFINTOSC is uncadited and operates at 31 kHz. It is enabled by
selecting this frequency (bits of the OSCCON regjsand setting the SCS bit of the same register.

Two-Speed Clock Start-up Mode

Two-Speed Clock Start-up mode is used to providéitiatal power savings when the
microcontroller operates in sleep mode. What is #lfliabout?

When configured to operate in LP, XT or HS modhks,axternal oscillator will be switched off on
transition to sleep in order to reduce the overaller consumption of the device.

When conditions for wake-up are met, the microaldr will not immediately start operating
because it has to wait for clock signal frequermypécome stable. Such delay lasts for exactly
1024 pulses. After that, the microcontroller pratewith program execution. The problem is that
very often only a few instructions are performetbbethe microcontroller is set up to Sleep mode
again. It means that most of time as well as pabeained from batteries is wasted. This problem
is solved by using internal oscillator for prograxecution while these 1024 pulses are counted.
Afterwards, as soon as the external oscillatordesgy becomes stable, it will automatically take
over the “leading role”. The whole process is eadlily setting one bit of the configuration word.
In order to program the microcontroller it is nesay to select the Int-Ext Switchover option in
software.

146

iE| mikrotlektronika - PicFLASH™ [v7.09] with mikrolCDy

File Device Buffer Windows USE gbout History
) . . Device
Configuration Bits
o : | PIC16FEET =]
/ Code Protect
Dscillator HS -
: @ None I Read ” Write]
Watchdog Timer Enabled hd 0000k - 1FFFR (&)
Power Up Timer Disabled - [verty [snk |
FLASH Program Memory
Master Clear Enabled - Write Enable I Erase ” Reset]
Data EE Protect Disabled - & ‘\Wiite protection OFf
Brown Out Detect BOD Enabled - (" 0000k - 00FFh Protected ’ Load HE:]
(" 0000k - O7FFh Protected
Int-Ext Switchover = E ’ Reload HE]
A (" 0000k - OFFFh Protected
Fail-safe Clk. Monitor Enabled - [Save HEX |
Low Yoltage Program Enabled 5
In-Circuit Debugger |CD Disabied - Calbration werd Fotect
— Cal. Word |1 1]
Brown-out Reset Sel, zef 1o 4 0V -
I CODE ” EEPROM]
0 Locabons
3FFF | [3FFF | [3FFF | [3FFF Clear .
I Cptions]
Proaram Memary Size: 8 K Device Status: Idle Tvoe T
EEFROM Size: 256 Bytes Address: Oh Rievisan | Dgress: . 1
File: C1{DOCUMENTS AND SETTINGS\MARKOJ, MIK|DESKT 0P\ TOUCHPANEL BIGPICSIP 18| TOUCHPANEL. HEX
Device! PIC16FE87 Operation: Nane |

Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) monitors the mi@n of external oscillator and allows the
microcontroller to proceed with program executiorere the external oscillator fails for some
reason. In that case, the internal oscillator takes its role.

e
o
b=
c
o
=

LFINTOSC

HFINTOSC
OSCCON

147

The fail-safe clock monitor detects a failed ostdl by comparing the internal and external clock
sources. In case it takes more than 2mS for thermadt oscillator clock to come, the clock source
will be automatically switched. The internal osaiitir will thereby continue operating controlled

by the bits of the OSCCON register. In case the I3 of the PIE2 register is set, an interrupt
will be generated. The system clock will continaéoe sourced from internal clock until the device
successfully restarts the external oscillator amitcbes back to external operation.

Similar to the previous cases, this module is exthbly changing configuration word just before
the programming of chip starts. This time, it isndoby selecting the option Fail-Safe Clock.

Monitor.
Dizabled

- mikrotlekironika - PicFLASH™ [v/.09] with mikrolCDY
File Device Buffer Windows US8 about History
, . Dhavviicm
Lo tioe Bit
nhguration Bis | PIC16FERT =]
Code Protect
Oscillator HS i o+ MNone ’ Read] [Wiike]
Watchdog Timer | Enabled d 0000k - TFFFh (Al I ”]
. | Werify Blank
Pao Ti | -
wer Up Timer | Disabled / FLASH Program Memory
Master Clear | Enabled - Write Enable l Erase] [Resel]
F
Data EE Protect | Dizabled - f* Wiite protection Off
Brown Dut Detect BOD Enabled = " DO00hK - DOFFh Protected l Load HEX]
" 0000k - 07FFh Protected
Int-Ext Switchover | Enablsd - = I Reload HEX]
" 0000k - OFFFh Protected
Fail-safe Clk. Monitor ’ Save HEX]
Low Yoltage Program Enabled hl
In-Circuit Debugger | |CD Disabled Calibration word Protect
Cal. Word
Brown-out Reset Sel. zel 1o 4.0V v
l CODE] [EEPROM]
ID Locations
3FFF 3IFFF JFFF 3JFFF -
’ Options]
Program Memony Size: § K Device Status: Idle Type T
EEPROM Size: 256 Bytes Addrezs: Dh Fevision | : T
File: CADOCUMENTS AND SETTIMGS\MARKC, MIK\DESKTOP TOUCHPAMEL BIGPTCS\P 18\ TOUCHPANEL HEX
Device: PIC16FEE7 Operation: Mone

148

OSCTUNE Register

Modifications in the OSCTUNE register affect theINFOSC frequency, but not the LFINTOSC
frequency. Furthermore, there is no indication migioperation that shift has occurred.

[- [- [TUNa | TUNs | TUN2 | TUN1 | TUNO |

Legend

- Bit is unimplemented
RMW Readable/Writable bit
0) After reset, bit is cleared

TUN4 - TUNO Frequency Tuning bits. By combining these five bits, the 8MHz oscillator
frequency shifts. In that way, the frequencies iolei@ by its division in the postscaler shift too.

TUN4 | TUN3 @ TUN2 | TUN1 | TUNO Frequency
0 1 1 1 1 Maximal
0 1 1 1 0
0 1 1 0 1
0 0 0 0 1
0 0 0 0 0 Calibrated
1 1 1 1 1
1 0 0 1 0
1 0 0 0 1
1 0 0 0 0 Minimal

EEPROM

EEPROM is neither part of program memory (ROM) data memory (RAM), but a special
memory segment. Even these memory locations areeasity and quickly accessed as other
registers, they are of great importance becauseEfBBROM data are permanently saved
(regardless of whether the power supply is on 8t &EPROM data can be also changed at any
moment. Because of these exceptional features,maelof EEPROM is valuable.

The PIC16F887 microcontroller has 256 locationslath EEPROM controlled by the bits of the
following registers:

« EECON1 (control register)

« EECON?2 (control register)

» EEDAT (saves data ready for write and read)

» EEADR (saves address of EEPROM location to be sedds

149

In addition, EECONZ2 is not true register, it do@ physically exist. It is used in write program
sequence only.

The EEDATH and EEADRH registers belong to the sayjrmup as the registers used during
EEPROM write and read. Both of them are therefaedufor program (FLASH) memory write
and read.

Since this is considered a risk zone (you surelyndibwant your microcontroller to accidentally
erase your program), we will not discuss it furthert advise you to be careful.

EECONL1 Register

Legend

= Bit iz unimplemented
RW ReadableWritable bit

R Readable bit

5 Bit can only be set

(0} After reset, bit is cleared
(x) After reset, bit is unknown

EEPGD - Program/Data EEPROM Select bit

* 1 - Access program memory.
* 0- Access EEPROM memory.

WRERR - EEPROM Error Flag bit

* 1 - Write operation is prematurely terminated amdrehas occurred.
* 0 -Access EEPROM memory.

WREN - EEPROM Write Enable bit.

« 1 - Write to data EEPROM enabled.
* 0 - Write to data EEPROM disabled.

WR - Write Control bit

e 1 - Initiates write to data EEPROM.
e 0 - Write to data EEPROM is complete.

RD - Read Control bit

e 1 - Initiates read from data EEPROM.
e 0 - Read from data EEPROM disabled.

150

Read from EEPROM Memory
In order to read data EEPROM memory, follow thecpoure below:

Step 1:Write an address (00h - FFh) to the EEADR register

Step 2:Select EEPROM memory block by clearing the EEP@GDfithe EECON1 register.
Step 3:To read location, set the RD bit of the same tegis

Step 4:Data is stored in the EEDAT register and readyste.

The following example illustrates data EEPROM read:

BSF STATUS,RP1 ;

BCF STATUS,RPO ; Access bank 2

MOVF ADDRESS,W ; Move address to the W register
MOVWF EEADR : Write address

BSF STATUS,RPO ; Access bank 3

BCF EECONL1,EEPGD ; Select EEPROM

BSF EECON1,RD ; Read data

BCF STATUS,RPO ; Access bank 2

MOVF EEDATA,W ; Data is stored in the W regist

Write to Data EEPROM Memory

In order to write data to EEPROM memory, firstgtriecessary to write to the EEADR register
first and data to the EEDAT register afterwardseflyou have to follow a special sequence to
initiate write for each byte. Interrupts must bsattiled during this procedure.

Data EEPROM write is illustrated in the exampleolel

BSF STATUS,RP1

BSF STATUS,RPO

BTFSC EECON,WR1 ; Wait for the previous writecimplete
GOTO $-1 ;

BCF STATUS,RPO ; Bank 2

MOVF ADDRESS,W ; Move address to W
MOVWF EEADR ; Write address

MOVF DATAW ; Move data to W

MOVWF EEDATA ; Write data

BSF STATUS,RPO ;Bank3

BCF EECONL,EEPGD ; Select EEPROM

BSF EECON1,WREN ; Write to EEPROM enabled
BCF INCON,GIE ; All interrupts disabled

MOVLW 55h ; Required sequence start
MOVWF EECON2

MOVLW AAh

MOVWF EECON2 : Required sequence end
BSF EECON1,WR

BSF INTCON,GIE ; Interrupts enabled

BCF EECONI1,WREN ; Write to EEPROM disabled

151

Reset! Black-out, Brown-out or Noises?

On reset, the microcontroller immediately stopsrafien and clears its registers. Reset signal may
be generated externally at any moment (low logrellen the MCLR pin). If needed it can be also
generated by internal control logic. Power-on alsvaauses reset. Namely, because of many
transitional events which take place when powerpbups on (switch contact flashing and
sparkling, slow voltage rise, gradual clock frequyestabilization etc.), it is necessary to provide
certain time delay before the microcontroller stawperating. Two internal timers- PWRT and
OST are in charge of that. The first one can béledaor disabled during program writing. The

scenario is as follows:

F 3
Umax --

When power supply voltage reaches 1.2 - 1.7" " W@M
a circuit calledPower-up timer resets the =7 =
microcontroller within approximately 72msS.
Immediately upon this time has run out, the
reset signal generates another timer called |
Oscilator start-up timer within 1024 quartz

oscillator periods. When this delay is over

(marked as T reset in figure) and the MCLR pi [:> Start
is set high, the microcontroller realizes that all

conditions are met and starts to execute the fi T reset Time
instruction in the program. < g

Power Supply Voltage

o
v

Apart from such- “controlled” reset which occurstla@ moment power goes on, there are another
two resets called@lack-out and Brown-out which may occur during operation as well as at the
moment power goes off.

Black-out reset .

LTI b sms s mmss e s 22 e et e ee e

Black-out reset takes place when the power nom
supply normally goes off. In that case, the Urrin — N __—
microcontroller has no time to do anything

unpredictable simply because the voltage if
drops very fast beneath minimal value. In <
other words- the light goes off, curtain falls &
down and the show is over! -
0 i
Time

Brown-out reset

L

L
Umax

When power supply voltage drops slowly L
(typical example of that is battery discharge """
although the microcontroller experiences far
faster voltage drop as a slow process), the
internal electronics gradually stops operating

and so called Brown-out reset occurs. In tha
case, prior to the microcontroller stops

operating there is a realistic danger that Tine
circuits which operate at higher voltages stai.

& Power Supply Waltaga

152

perform unpredictable. It can also causes fatahgba in the program itself because it is saved in
on-chip flash memory.

Noises 4

Urngs -

Unarm

This is a special kind of Brown-out reset
which occurs in industrial environment when
the power supply voltage “blinks” for a
moment and drops its value beneath minime
level. Even short, such noise in power line
may catastrophically affect the operation of
device.

Umin

= Power Supply Vol age

Time

MCLR pin

Logic zero (0) on the MCLR pin causes immediate esgllar reset. It is recommended to be
connected as shown in figure below. The functioradditional components is to sustain “pure”
logic one (1) during normal operation. If their wa$ are such to provide high logic level on the pin
only upon T reset is over, the microcontroller wiimediately start operating. This feature may be
very useful when it is necessary to synchronizeogheration of the microcontroller with additional
electronics or the operation of several microcdldrs.

VCC ﬁ_—ﬁaﬁ
R1

1K (or more)

[MCLR

-1 _C1

Iﬂ_“luF (no danger)

GND

In order to avoid any error which may occur on Bnesut reset, the PIC 16F887 has built in
‘defense mechanism’. It is a simple but effectiwrewdt which reacts every time the voltage power
supply drops below 4V and holds that level for mtiven 100 micro seconds. In that case, this
circuit generates reset signal and since that mbthenwhole microcontroller operates as if it has
just been switched on.

153

Chapter 9: Instruction Set

It has been already mentioned that microcontralléfers from other integrated circuits. Most of
them are ready for installation into the targetideyust as they are, which is not the case wi¢h th
microcontrollers. In order that the microcontrollaay operate, it needs precise instructions on
what to do. In other words, a program which therodontroller should execute must be written
and loaded into the microcontroller. This chaptrers the commands which the microcontroller
“understands”. The instruction set for the 16FXXlides 35 instructions in total. Such a small
number of instructions is specific to the RISC mgontroller because they are well-optimized
from the aspect of operating speed, simplicity iohdecture and code compactness. The only
disadvantage of RISC architecture is that the pnogner is expected to cope with these

instructions.

Instruction

MOVLW k
MOVWEF f
MOVF f,d
CLRW
CLRF f
SWAPF f,d

ADDLW k
ADDWEF f,d
SUBLW k
SUBWEF f,d

ANDLW k

ANDWEF f,d
ANDWEF f,d
IORLW k

IORWF f,d

XORWEF f,d

XORLW k

INCF f,d
DECF f,d
RLF f,d
RRF f,d
COMF f,d

BCF f,b

Description

Operation

Data Transfer Instructions

Move constant to W
Move W to f

Move fto d

Clear W

Clear f

Swap nibbles in f

k->w
W ->f
f->d
0->WwW
0->f

f(7:4),(3:0) -> f(3:.(:4)

Arithmetic-logic Instructions

Add W and constant
Add W and f
Subtract W from constant

Subtract W from f

Logical AND with W with
constant

Logical AND with W with f
Logical AND with W with f
Logical OR with W with constart
Logical OR with W with f

Logical exclusive OR with V
with constant

Logical exclusive OR with V
with f

Increment f by 1

Decrement f by 1

Rotate left f through CARRY bit
Rotate right f through CARRY bit

Complement f

W+k -> W

W+f->d

k-W -> W

f-w->d

W AND k -> W

W AND f->d
W AND f->d
WORK->W

WORTf->d

W XOR k -> W

W XORf->d

f+1 -> f
f-1->f

Bit-oriented Instructions

Clear bitbin f

Flag

CLK *

1

1

1 11,2
1

1 2

1 1,2

1

1 1,2

1

1 1,2

1

1 1,2

1 1,2
1
11,2

1 1,2

1
11,2
11,2
11,2

1 1,2
11,2
11,2

154

BSF f,b Clear bitbin f 1 ->1f(b) 11,2

Program Control Instructions

Test bit b of f. Skip the followin

BTFSC b instruction if clear. Skip if f(b) = 0 1) 3
BTFSS b Test bit b of f. Skip the followin Skip if f(b) = 1 1) 3
DECFSZ fd Decrement f. Skip the followl" 1 > g skipifz=1 1) 1'32’
LIS
GOTO k Go to address k->PC 2
CALL k Call subroutine PC->TOS, k->PC 2
RETURN Return from subroutine TOS -> PC 2
RETLW k Return with constant in W k->W, TOS -> PC 2
RETFIE Return from interrupt TOS ->PC, 1 ->GIE 2

Other instructions
NOP No operation TOS ->PC, 1 ->GIE 1
CLRWDT Clear watchdog timer 0->WDT,1->TO,1-BP TO, PD 1
SLEEP Go into sleep mode 0->WDT,1->TO, 0->PDO, PD 1

*1 When an I/O register is modified as a functidrtgelf, the value used will be that value present
on the pins themselves.

*2 If the instruction is executed on the TMR regrsand if d=1, the prescaler will be cleared.

*3 If the PC is modified or test result is logiceo(l), the instruction requires two cycles.

Data Transfer Instructions

Data Transfer within the microcontroller takes plabetween working register W (called
accumulator) and a register which represents argtilin of internal RAM regardless of whether it
is about special function or general purpose reggst

First three instructions move literal to W regisf®lOVLW stands formove Literal to W), move
data from W register to RAM and from RAM to W regis(or to the same RAM location with
change on flag Z only). Instruction CLRF clearsefister, whereas CLRW clears W register.
SWAPF instruction swaps nibbles within f registend nibble contains four bits).

Arithmetic-logic Instructions

Similar to most microcontrollers, PIC supports omlyo arithmetic instructions- addition and
subtraction. Flags C, DC, Z are automatically sepeshding on the results of addition or
subtraction. The only exception is the flag C. Simubtraction is performed as addition with
negative value, the flag C is inverted after sudtioa. It means that the flag C is set if it is pibte

to perform operation and cleared if the larger nems subtracted from smaller one. Logic one (1)
of the PIC is able to perform operations AND, ORX-EBR, inverting (COMF) and rotation (RLF
and RRF).

155

Instructions which rotate a register actually retiés bits through the flag C by one bit left (toda
bit 7) or right (toward bit 0). The bit shifted frothe register is moved to the flag C which is
automatically moved to the bit on the opposite sifithe register.

Bit-oriented Instructions

Instructions BCF and BSF clear or set any bit inmmogy. Although it seems to be a simple
operation, it is not like that. CPU first reads #ire byte, changes one its bit and rewrites the
whole byte to the same location.

Program Control Instructions

PIC16F887 executes instructions GOTO, CALL, RETURN the same way as all other
microcontrollers do. A difference is that stackndependent from internal RAM and has 8 levels.
The ‘RETLW K’ instruction is identical to RETURN siruction, with exception that a constant
defined by instruction operand is written to ther®gister prior to return from subroutine. This
instruction enablesookup tabels to be easily created by creating a tabéesagroutine consisting
of ‘RETLWK' instructions, where the literals ‘k’ beng to the table. The next step is to write the
position of the constant k (0, 1, 2, 3...n) to Ws&gy and call the subroutine (table) using the
CALL instruction. Table below consists of the fallmg literals: kO, k1, k2...kn.

Main moviw 2 ;write number 2 to accumulator

call Lookup ;jump to the lookup table

Lookup addwf PCL,f ;add accumulator and program cur
;rent address (PCL)

retlw kO ;return from subroutine (accuatal contains kO)
retiw k1
retlw k2
retiw kn ;return from subroutine (accuatol contains kn)

The first line of the subroutine (instructi®mbwr PCL, f)simply adds the constant “k” from W

register and table start address which is storédarPCL register. The result is real data address
program memory. Upon return from the subroutine WM register will contain the addressed
constant k. In this case, it is the constant ‘k2’.

RETFIE RETurn From Interrupt) represents return from interrupt routine. In cast to the
RETURN instruction, it may automatically set theEQdit (Global Interrupt Enable). When an
interrupt occurs this bit is automatically clear@hly the program counter is pushed to the stack,
which means that there is no auto save of registtatus and the current status either. The
problem is solved by saving status of all importaagisters at the beginning of interrupt routine.
These values are retrieved to these registers inatedgdbefore leaving the interrupt routine.

Conditional jumps are executed by two instructidd§FSC and BTFSS. Depending on the state
of bit being tested in the ‘f' register, the followg instruction will be skipped or not.

Instruction Execution Time

All instructions are single-cycle instructions. Tlaly exception may be conditional branch
instructions (if condition is met) or instructiobging executed upon the program counter. In both

156

cases, two cycles are required for instruction ettiec where the second cycle is executed as a
NOP (No Operation). One instruction cycle consists of four clock legc If 4MHz oscillator is
used, a nominal time for instruction execution S1In case of jump, the instruction execution
time is 2iS.

Legend

f - Any memory location (register)

W - Working register (accumulator)

b - Bit address within an 8-bit register

d - Destination bit

[label] - Set of 8 characters indicating start aftular address in the program
TOS - Top of stack

[] - Option

<> - bit field in register (several bit addresses)
C - Carry/Borrow bit of the STATUS register
DC - Digit Carry bit of the STATUS register

Z - Zero bit of the STATUS register

ADDLW - Add literal and W

Syntax: [label] ADDLW k

Description: The content of the register W is adttethe 8-bit literal k. The result is stored ieth
W register.

Operation: (W) + k ->W

Operand: X k< 255

Status affected: C, DC, Z

Number of cycles: 1

EXAMPLE:

[label] ADDLW 0x15

Before instruction execution: W=0x10

After instruction: W=0x25

C=0 (the result is not greater than OxFF, whichmsdhat Carry has not occurred).

ADDWEF - Add W and f

Syntax: [label] ADDWF f, d

Description: Add the contents of the W and f regyist
If d =w or d =0 the result is stored in the Wistey.

If d =ford=1the result is stored in register
Operation: (W) + (f) -> d

Operand: xf<127,d [0,1]

Status affected: C, DC, Z

Number of cycles: 1

EXAMPLE 1:

[label] ADDWF REG,w

157

Before instruction execution: W = 0x17

REG = 0xC2

After instruction: W = 0xD9

REG = 0xC2

C=0 (No carry occurs, i.e. the result is maximuiitdong).

EXAMPLE 2:

[label] ADDWF INDF,f

Before instruction execution: W=0x17

FSR = 0xC2 Register at address 0xC2 contains tlue ¥x20
After instruction: W = 0x17

FSR=0xC2, Register at address 0xC2 contains thue 37

ANDLW - AND literal with W

Syntax: [label] ANDLW k

Description: The content of the register W is AN®ieith the 8-bit literal k. It means that the
result will contain one (1) only if both correspamgl bits of operand are ones (1). The result is
stored in the W register.

Operation: (W) AND k -> W

Operand: X k< 255

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] ANDLW Ox5F

Before instruction execution: W = 0xA3 ; 1010 0q0%A3)
; 0101 1111 (Ox5F)

After instruction: W = 0x03 ; 0000 0011 (0x03)

Z =0 (result is not 0)

EXAMPLE 2:

[label] ANDLW 0x55

Before instruction execution: W = 0xAA ; 1010 10DXAA)
; 0101 0101 (0x55)

After instruction: W = 0x00 ; 0000 0000 (0x00)

Z =1(resultis 0)

ANDWEF - AND W with f

Syntax: [label] ANDWF f.d

Description: AND the W register with register f.

If d =w or d =0, the result is stored in the Vijister.
If d =ford=1, the result is stored in register
Operation: (W) AND (f) ->d

Operand: &< f< 127, d[0,1]

158

Status affected: Z
Number of cycles: 1

EXAMPLE 1:

[label] ANDWF REG,f
Before instruction execution: W = 0x17, REG = Ox@®01 0111 (0x17)
; 1100 0QDxC2)

After instruction: W = 0x17, REG = 0x02 ; 0000 00[Dx02)
EXAMPLE 2:

[label] ANDWF FSR,w
Before instruction execution: W = 0x17, FSR = Ox@®01 0111 (0x17)
; 1100 0QDxC?2)

After instruction: W = 0x02, FSR = 0xC2 ; 0000 0qDx02)

BCF - Bit Clear f

Syntax: [label] BCF f, b

Description: Bit b of register f is cleared.
Operation: (0) -> f(b)

Operand: G f<127,0<b<7

Status affected: -

Number of cycles: 1

EXAMPLE 1:

[label] BCF REG,7

Before instruction execution: REG = 0xC7 ; 1100 D1axC7)
After instruction: REG = 0x47 ; 0100 0111 (0x47)
EXAMPLE 2:

[label] BCF INDF,3
Before instruction execution: W = 0x17

FSR = 0xC2

Register at address (FSR)casttie value Ox2F
After instruction: W = 0x17

FSR = 0xC2

Register at address (FSR)costtie value 0x27

BSF- Bit set f

Syntax: [label] BSF f,b

Description: Bit b of register f is set.
Operation: 1 -> f (b)

Operand: G f<127,0<b<7
Status affected: -

Number of cycles: 1

159

EXAMPLE 1:

[label] BSF REG,7
Before instruction execution: REG = 0x07 ; 0000 D1ax07)
After instruction: REG = 0x87 ; 1000 0111 (0x87)

EXAMPLE 2:

[label] BSF INDF,3
Before instruction execution: W = 0x17

FSR = 0xC2

Register at address (FSR)costtie value 0x20
After instruction: W = 0x17

FSR = 0xC2

Register at address (FSR)casttie value 0x28

BTFSC - Bit test f, Skip if Clear

Syntax: [label] BTFSC f, b

Description: If bit b of register f is 0, the namstruction is skipped and a NOP is executed instea
In this case, two-cycle instruction is required.

Operation: Skip the next instruction if f(b) = 0

Operand: G f<127,0<b<7

Status affected: -

Number of cycles: 1 or 2 depending on bit b

EXAMPLE:

LABL(Sl BTFSC REG,1 ; Test bit 1 of REG
LAB 02 ; Skip this line if bit = 1
LAB 03 ; Jump here if bit=0

Before instruction execution: The program countesat address LAB_01.
After instruction:

- if bit 1 of REG is cleared, program counter psitd address LAB_03.

- if bit 1 of REG is set, program counter pointatiress LAB_02.

BTFSS- Bit test f, Skip if Set

Syntax: [label] BTFSS f, b

Description: If bit b of register f is 1, the namstruction is skipped and a NOP is executed inlstea
In this case, two-cycle instruction is required.

Operation: Skip the next instruction if f(b) = 1

Operand: G f<127,0<b<7

Status affected: -

Number of cycles: 1 or 2 depending on bit b

EXAMPLE:

LAB_01 BTFSS REG,3 : Test bit 3 of REG
LAB 02 ; Skip this line if bit =0
LAB 03 ; Jump here if bit=1

160

Before instruction execution: The program countasat address LAB_01
After instruction:

- if bit 3 of REG is cleared, program counter psitd address LAB_03.

- if bit 3 of REG is cleared, program counter psitd address LAB_02.

CALL - calls Subroutine

Syntax: [label] CALL k

Description: Calls subroutine. First the addresthefnext instruction to execute is pushed onto the
stack. It is the PC+1 address. Afterwards, theaubine address is written to the program counter.
Operation: (PC) + 1 -> (Top Of Stack - TOS)

k->PC (10:0), (PCLATH (4 : 3)) -> PC (12: 11)

Operand: G k <2047

Flag: -

Status affected: 2

EXAMPLE:

LAB_01 CALL LAB_02 : Call subroutine LAB_02

LAB_02 ...

Before instruction execution: PC = address LAB_01
TOS (top of stack) = x

After instruction: PC = address LAB_02
TOS (top of stack) = LAB_01

CLRF -clearf

Syntax: [label] CLRF f

Description: The content of register f is clearad the Z flag of the STATUS register is set.
Operation: 0 -> f

Operand: < f< 127

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] CLRF TRISB
Before instruction execution: TRISB=0xFF
After instruction: TRISB=0x00
Z=1
EXAMPLE 2:
Before instruction execution: FSR=0xC2
Register at address 0xC2 casttie value 0x33
After instruction: FSR=0xC2
Register at address 0xC2 casttie value 0x00
Z=1

161

CLRW -cClearw

Syntax: [label] CLRW

Description: Register W is cleared and the Z flathe STATUS register is set.
Operation: 0 ->W

Operand: -

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] CLRW

Before instruction: W=0x55

After instruction: W=0x00
Z=1

CLRWODT - clear Watchdog Timer

Syntax: [label] CLRWDT

Description: Resets the watchdog timer and the VgEEBcaler. Status bits TO and PD are set.
Operation: 0 -> WDT 0 -> WDT prescaler 1 -> TO 1RB

Operand: -

Status affected: TO, PD

Number of cycles: 1

EXAMPLE :

[label] CLRWDT
Before instruction execution: WDT counter = x
WDT prescaler = 1:128
After instruction: WDT counter = 0x00
WDT prescaler =0
TO=1
PD=1
WDT prescaler = 1: 128

COMF - complement f

Syntax: [label] COMF f, d

Description: The content of register f is completeern(logic zeros (0) are replaced by ones (1) and
vice versa). If d = w or d = 0 the result is stomredV. If d = f or d = 1 the result is stored irgigter

f.

Operation: (f) -> d

Operand: <127, d[0,1]

Status affected: Z

Number of cycles: 1

EXAMPLE 1.
[label] COMF REG,w

Before instruction execution: REG = 0x13 ; 0001 D(x13)
; complementing

162

After instruction: REG =0x13; 1110 1100 (OXEC)
W = OxEC
EXAMPLE 2:

[label] COMF INDF, f
Before instruction execution: FSR = 0xC2

Register at address (FSR)costtie value OXAA
After instruction: FSR = 0xC2

Register at address (FSR)costtie value 0x55

DECF - Decrement f

Syntax: [label] DECF f, d

Description: Decrement register f by one. If d @md = 0, the result is stored in the W register. |
d =ford =1, the result is stored in register f.

Operation: (f)-1->d

Operand: < <127, d[0,1]

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] DECF REG,f

Before instruction execution: REG = 0x01
Z=0

After instruction: REG = 0x00
Z=1

EXAMPLE 2:

[label] DECF REG,w

Before instruction execution: REG = 0x13
W=x,Z2=0

After instruction: REG = 0x13
W=0x12,Z2=0

DECFSZ - Decrement f, Skip if 0

Syntax: [label] DECFSZ f, d

Description: Decrement register f by one. If d @md = 0, the result is stored in the W register. |
d =ford =1, the result is stored in registdf the result is 0, then a NOP is executed instéad
this case, two-cycle instruction is required.

Operation: (f)-1->d

Operand: <127, d[0,1]

Status affected: -

Number of cycles: 1 or 2 depending on the result.

EXAMPLE 1:

MOVLW .10
MOVWF CNT ;10 -> CNT

163

...... ;Instruction block
DECFSZ CNT,f ; decrement REG by one
GOTO Loop ; Skipthislineif=0

LAB 03 ; Jump hereif =0

In this example, instruction block is executed amyntimes as the initial value of the variable

CNT is, which in this example is 10.

GOTO - Unconditional Branch

Syntax: [label] GOTO k
Description: Unconditional jump to the address k.

Operation: (k) -> PC(10:0), (PCLATH(4:3)) -> PC(12)

Operand: G k<2047
Status affected: -
Number of cycles: 2

EXAMPLE :

LAB_00 GOTO LAB_01 ; Jump to LAB_0O1

LAB 01 ; Program continues from here
Before instruction execution: PC = LAB_00 address
After instruction: PC = LAB_01 address

INCF - Increment f

Syntax: [label] INCF f, d

Description: Increment register f by one.

If d =w or d =0, the result is stored in registér
If d =ford=1, the result is stored in register
Operation: () +1->d

Operand: G< f< 127, d[0,1]

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] INCF REG,w

Before instruction execution: REG = 0x10
W=x,Z2=0

After instruction: REG = 0x10
W=0x11,Z2=0

EXAMPLE 2:

[label] INCF REG,f

Before instruction execution: REG = OxFF
Z=0

After instruction: REG = 0x00
Z=1

164

INCFSZ - Increment f, Skip if 0

Syntax: [label] INCFSZ f, d

Description: Register f is incremented by one. #@ or d = 0, the result is stored in registerliV.
d =ford =1, the result is stored in registdf the result is 0, then a NOP is executed inst&ad
this case, two- cycle instruction is required.

Operation: () +1->d

Operand: &< f< 127, d[0,1]

Status affected: -

Number of cycles: 1 or 2 depending on the result.

EXAMPLE :

LAB_01 INCFSZ REG,f ; Increment REG by one
LAB 02 ; Skip this line if result is O

LAB 03 ; Jump here if resultis O

The content of program counter Before instructivecaition, PC= LAB_0laddress.

The content of REG after instruction, REG = REGFREG=0, the program counter points to the
address of label LAB_03. Otherwise, the progranntaupoints to address of the next instruction,
i.e. to LAB_02 address.

IORLW - Inclusive OR literal with W

Syntax: [label] IORLW k

Description: The content of the W register is ORMth the 8-bit literal k. The result is stored in
register W.

Operation: (W) OR (k) -> W

Operand: X k< 255

Status affected: -

Number of cycles: 1

EXAMPLE :

[label] IORLW 0x35
Before instruction execution: W = Ox9A
After instruction: W = OxBF

Z=0

IORWEF - Inclusive OR W with f

Syntax: [label] IORWF f, d

Description: The content of register f is OR’edwihe content of W register. If d = w or d = 0, the
result is stored in the W register. If d = f or d /he result is stored in register f.

Operation: (W) OR (f) -> d

Operand: G f<127,d ->[0,1]

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

165

[label] IORWF REG,w
Before instruction execution: REG = 0x13,

W = 0x91
After instruction: REG = 0x13,
W=0x93Z2=0

EXAMPLE 2:

[label] IORWF REG,f
Before instruction execution: REG = 0x13,

W = 0x91
After instruction: REG = 0x93,
W=0x9172=0
MOVF - Move f

Syntax: [label] MOVF f, d

Description: The content of register f is movedtdestination determined by the operand d. If d =
w or d = 0, the content is moved to register Wi # f or d = 1, the content remains in register f.
Option d = 1 is used to test the content of regisbecause this instruction affects the Z flaghaf
STATUS register.

Operation: (f) -> d

Operand: 6<f<127,d ->[0,1]

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] MOVF FSR,w

Before instruction execution: FSR=0xC2
W=0x00

After instruction: W=0xC2
Z=0

EXAMPLE 2:

[label] MOVF INDF,f
Before instruction execution: W=0x17
FSR=0xC2, register at addreg32contains the value 0x00
After instruction: W=0x17
FSR=0xC2, register at addreg32contains the value 0x00,
Z=1

MOVLW - Move literal to W

Syntax: [label] MOVLW k

Description: 8-bit literal k is moved to register W
Operation: k -> (W)

Operand: X k< 255

Status affected: -

Number of cycles: 1

166

EXAMPLE 1:

[label] MOVLW 0x5A

After instruction: W=0x5A

EXAMPLE 2:

Const equ 0x40

[label] MOVLW Const

Before instruction execution: W=0x10
After instruction: W=0x40

MOVWF - Move W to f

Syntax: [label] MOVWF f

Description: The content of register W is moveddgister f.

Operation: (W) -> f
Operand: < f< 127
Status affected: -
Number of cycles: 1

EXAMPLE 1:

[label] MOVWF OPTION_REG

Before instruction execution: OPTION_REG=0x20
W=0x40

After instruction: OPTION_REG=0x40
W=0x40

EXAMPLE 2:

[label] MOVWF INDF
Before instruction execution: W=0x17

FSR=0xC2, register at addreg32contains the value 0x00

After instruction: W=0x17

FSR=0xC2, register at addreg€32contains the value 0x17

NOP - No Operation

Syntax: [label] NOP
Description: No operation.
Operation: -

Operand: -

Status affected: -

Number of cycles: 1
EXAMPLE :

[label] NOP ; 1us delay (oscillator 4MHZz)
Before instruction execution: PC = x
After instruction: PC=x+1

167

RETFIE - Return from Interrupt

Syntax: [labels] RETFIE

Description: Return from subroutine. The valueapgd from the stack and loaded to the program
counter. Interrupts are enabled by setting th&Hi of the INTCON register.

Operation: TOS -> PC, 1 -> GIE

Operand: -

Status affected: -

Number of cycles: 2

EXAMPLE :

[label] RETFIE
Before instruction execution: PC = x

GIE (interrupt enable bit oEtBATUS register) =0
After instruction: PC = TOS (top of stack)

GIE=1

RETLW - Return with literal in W

Syntax: [label] RETLW k

Description: 8-bit literal k is loaded into regisi®. The value from the top of stack is loaded to
the program counter.

Operation: (k) -> W; top of stack (TOP) -> PC

Operand: -

Status affected: -

Number of cycles: 2

EXAMPLE :

[label] RETLW 0x43

Before instruction execution: W = x
PC=x
TOS (top of stack) = x

After instruction: W = 0x43
PC = TOS (top of stack)
TOS (top of stack) =TOS -1

RETURN - Return from Subroutine

Syntax: [label] RETURN

Description: Return from subroutine. The value fritva top of stack is loaded to the program
counter. This is a two-cycle instruction.

Operation: TOS -> program counter PC.

Operand: -

Status affected: -

Number of cycles: 2

EXAMPLE :
[label] RETURN

168

Before instruction execution: PC = x
TOS (top of stack) = x

After instruction: PC = TOS (top of stack)
TOS (top of stack) = TOS -1

RLF - Rotate Left f through Carry

Syntax: [label] RLF f, d
Description: The content of register f is rotatee dit to the left through the Carry flag. If d =ow
d =0, the result is stored in register W. If derfd = 1, the result is stored in register f.
Operation: (f(n)) -> d(n+1), f(7) -> C, C -> d(0);

Operand: < <127, d[0,1]

Status affected: C f Register

Number of cycles: 1

EXAMPLE 1: |7\£‘_| ‘ “_

bit 7 kit 0

[label] RLF REG,w
Before instruction execution: REG = 1110 0110

CcC=0

After instruction: REG =1110 0110
W =1100 1100
c=1

EXAMPLE 2:

[label] RLF REG,f

Before instruction execution: REG = 1110 0110
CcC=0

After instruction: REG =1100 1100
c=1

RRF - Rotate Right f through Carry

Syntax: [label] RRF f, d
Description: The content of register f is rotatee @it right through the Carry flag. If d = w ord
0, the result is stored in register W. If d = fdor 1, the result is stored in register f.

Operation: (f(n)) -> d(n-1), f(0) -> C, C -> d(7);
Operand: G f<127,d ->[0,1]

Status affected: C

Number of cycles: 1

EXAMPLE 1: C | ‘
bit 7 bit 0

[label] RRF REG,w
Before instruction execution: REG = 1110 0110

f Register

W =x
C=0
After instruction: REG =1110 0110
W =0111 0011
CcC=0

169

EXAMPLE 2:

[label] RRF REG,f
Before instruction execution: REG = 1110 0110, C =
After instruction: REG =01110011,C=0

SLEERP - Enter Sleep mode

Syntax: [label] SLEEP

Description: The processor enters sleep mode. $tiddador is stopped. PD bit (Power Down) of
the STATUS register is cleared. TO bit of the saeggster is set. The WDT and its prescaler are
cleared.

Operation: 0 -> WDT, 0 -> WDT prescaler, 1 -> TO>0PD

Operand: -

Status affected: TO, PD

Number of cycles: 1

EXAMPLE :

[label] SLEEP
Before instruction execution: WDT counter = x
WDT prescaler = x
After instruction: WDT counter = 0x00
WDT prescaler =0
TO=1
PD=0

SUBLW - Subtract W from literal

Syntax: [label] SUBLW k

Description: The content of register W is subtrddtem the literal k. The result is stored in
register W.

Operation: k - (W) -> W

Operand: & k < 255

Status affected: C, DC, Z

Number of cycles: 1

EXAMPLE :

[label] SUBLW 0x03

Before instruction execution: W = 0x01, C = x, X =
After instruction: W = 0x02, C =1, Z = 0 resudtpositive

Before instruction execution: W = 0x03, C = x, X=
After instruction: W =0x00,C =1, Z =1 resutd

Before instruction execution: W = 0x04, C = x, X =
After instruction: W = OxFF, C =0, Z = 0 residtnegative

170

SUBWEF - subtract W from f

Syntax: [label] SUBWEF f, d
Description: The content of register W is subtrddtem register f.

If d =w ord =0, the result is stored in registérif d = f or d = 1, the result is stored in r&tgr f.

Operation: (f) - (W) ->d
Operand: xf<127,d [0,1]
Status affected: C, DC, Z
Number of cycles: 1

EXAMPLE :

[label] SUBWF REG,f
Before instruction execution: REG

=3, W
After instruction: REG=1,W=2,C=1,

=2,C,ZxX
Z = (sudt is positive
Before instruction execution: REG

=2, W=2,C,2X
After instruction: REG=0,W=2,C= =

1, ISudt is O

Before instruction execution: REG =1, W =2, C,Zx¢& X
After instruction: REG = OxFF, W = 2, C =0, Z ¥dbult is negative

SWAPF - Swap Nibbles in f

Syntax: [label] SWAPF 1, d

Description: The upper and lower nibbles of registee swapped. If d =w or d = 0, the result is

stored in register W. If d = f or d = 1, the regslstored in register f.
Operation: f(0:3) -> d(4:7), f(4:7) -> d(0:3);

Operand: xf<127,d [0,1]

Status affected: -

Number of cycles: 1

EXAMPLE 1:

[label] SWAPF REG,w
Before instruction execution: REG=0xF3
After instruction: REG=0xF3
W = Ox3F
EXAMPLE 2:

[label] SWAPF REG f

Before instruction execution: REG=0xF3
After instruction: REG=0x3F

XORLW - Exclusive OR literal with W

Syntax: [label] XORLW k

Description: The content of register W is XOR’edwthe 8-bit literal k . The result is stored in

register W.

171

Operation: (W) .XOR. k -> W
Operand: X k< 255

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] XORLW OxAF
Before instruction execution: W = 0xB5 ; 1011 0X04B5)
; 1010 1111 (OxAF)

After instruction: W = 0x1A ; 0001 1010 (Ox1A)
Z=0

EXAMPLE 2:

Const equ 0x37

[label] XORLW Const

Before instruction execution: W=0xAF ; 101111 (OXAF)
Const = 0x37 ; 0011 0111 (0x37)

After instruction: W =0x98 ; 1001 1000 (0x98)
Z=0

XORWEF - Exclusive OR W with f

Syntax: [label] XORWF f, d

Description: The content of register f is XOR’edwihe content of register W. A bit of result is
set only in case the corresponding bits of operanelglifferent. If d = w or d = 0, the result is
stored in register W. If d = f or d = 1, the resslstored in register f.

Operation: (W) .XOR. k ->d

Operand: &< f< 127, d[0,1]

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] XORWF REG,f
Before instruction execution: REG = OxAF, W = OxBBE010 1111 (OxAF)
; 1011 Q1@xB5)

After instruction: REG = 0x1A, W = 0xB5 ; 0001 1D(0x1A)
EXAMPLE 2:

[label] XORWF REG,w
Before instruction execution: REG = OxAF, W = OxBBE010 1111 (OxAF)
; 1011 Q1@xB5)

After instruction: REG = OxAF, W = 0x1A ; 0001 1@{0x1A)

172

In addition to the preceding instructiorMicrochip has also introduced some other instructions.
More precisely, they are not instructions as suneh, macros supported by MPLAB/Jicrochip
calls them “Special Instructions” since all of thane in fact obtained by combining already.

Instruction Description Equivalent Instruction Status Affected
ADDCF fd | Add with carry :?\ITCFFSC STATUS,C
ADDDCF fd Add with Digit Carry :?\ITCFFSC STATUS,DC
B k Branch GOTO
BTFSC
BC k Branch on Carry GOTO STATUS,C
- BTFSC
BDC k Branch on Digit Carry GOTO STATUS,DC
BTFSS
BNC k Branch on No Carry GOTO STATUS,C
- BTFSS
BNDC Kk Branch on No Digit Carry GOTO STATUS,DC
BTFSS
BNZ k Branch on No Zero GOTO STATUS,Z
BTFSC
BZ Kk Branch on Zero GOTO STATUS,Z
CLRC Clear Carry BCF STATUS,C
CLRDC Clear Digit Carry BCF STATUS,DC
CLRZ Clear Zero BCF STATUS,Z
MOVFW f Move File to W MOVF
SETC f Set Carry BSF STATUS,C
SETDC Set Digit Carry BSF STATUS,DC
SETZ Set Zero BSF STATUS,Z
SKPC Skip on Carry BTFSS STATUS,C
SKPDC Skip on Digit Carry BTFSS STATUS,DC
SKPNC Skip on No Carry BTFSC STATUS,Z
SKPNDC Skip on No Digit Carry BTFSC STATUS,DC
SKPNZ Skip on Non Zero BTFSC STATUS,Z
SKPZ Skip on Zero BTFSS STATUS,Z
SUBCF f,d | Subtract Carry from File BEESFC STATUS,C
Subtract Digit Carry frorBTFSC
SUBDCF f, d File DECE STATUS,DC
TSTF f Test File MOVF

173

Appendix A: Programming a Microcontroller

Microcontroller and humans communicate through medium of the programming language
called Assembly language. The word “Assembler’lits®es not have any deeper meaning, it
corresponds to the names of other languages sughgiish or Franch. More precisely, assembly
language is only a passing solution. In order therguontroller can understand a program written
in assembly language, it must be compiled into anglage of zeros and ones”. “Assembly
language” and “Assembler” do not have the same mgaithe first one refers to the set of rules
used for writing program for the microcontrollerhie later refers to a program on personal PC
used to translate assembly language statementshiattanguage of zeros and ones. A compiled
program is also called a “machine code”. “Prograsna data file stored on a computer hard disc
(or in memory of the microcontroller if loaded) awditten according to the rules of assembly or
some other programming language. Assembly langisagederstandable for the humans because
it consists of meaningful words and symbols of alpgt. Let us take for example the command
“RETURN” which is, as its name indicates, useddtum the microcontroller from a subroutine.
In machine code, the same command is represented ly-bit array of zeros and ones
understandable for the microcontroller. All assgmbhguage commands are similarly compiled
into the corresponding array of zeros and onesat& file used for storing compiled program is
called “executive file”, i.e. “HEX data file”. Theame runs from hexadecimal presentation of data
file and suffix “hex” as well, for example “probexi’. After has been generated, data file is loaded
into the microcontroller using programmer. Assemlalyguage program may be written in any
program for text processing (editor) able to cre&®I1l data file on a hard disc or in a specialized
work environment such as MPLAB described later.

ot tﬁ_a}_gllefﬁ!ﬁon

\ .
. Programmer / i,

Program.hex G » ﬁ

ELEMENTS OF ASSEMBLY LANGUAGE

A program written in assembly language consistseskral elements being differently interpreted
during compiling program into executable data filae usage of these elements by strict rules and
it IS necessary to pay special attention to thermdyprogram writing in order to avoid errors.

ASSEMBLY LANGUAGE SYNTAX

As mentioned, it is necessary to observe some fapeales in order to enable the process of
compiling into executive HEX code to run withoutas. These compulsory rules explaining how
sequences of expressions are put together to fbemstatements that make up an assembly
language program are called syntax. There aresavgral of them:

174

» Every program line may consist of maximum 255 ctians.

* Every program line that is to be compiled musttstath a symbol, a label, mnemonics or
directive.

* A text following the mark “;” in a program line regsents a comment which is ignored by
assembler (not compiled).

» All the elements of one program line (labels, instions etc.) must be separat ed by at least
one space character. For the sake of better clegragush-button TAB is commonly used
instead of it, so that it is easy to delimit colwith labels, directives etc. in a program.

LABELS

A label represents a textual version of some addreROM or RAM memory. Each label has to
start in the first column with a letter of alphabet’ " and may consist of maximum 32 characters.
Besides, It is easily used:

» It is sufficient to enter the name of a label iastef 16-bit address in instruc tion which
calls some subroutine or a jump. The label withstmme name should be also written at the
beginning of a program line in which a subroutinarts or where a jump should be
executed. As a general rule, labels have easibgrezable names.

During program compiling, assembler will automadticaeplace the labels by the corresponding
addresses.

| 1 -
—gFirst column i
1

Correctly written label:

Start
End

P123

Incorrectly written label:

Start
24drele

COMMENTS

Acomment is often an explanatory text written bg firogrammer in order to make a program
clearer and easier to understand. It is not negegsaomment every line. When three or four lines
of code work together to accomplish some higheell¢ask, it is better to have a single higher
level comment for the group of lines. Thereforeisiadded if needed and has to start with “;”.
Comments added to assembly source code are noiledrimgo machine code.

175

INSTRUCTIONS

Instructions are defined for each microcontroleEmfly by the manufacturer. Therefore, it is up to
the user to follow the rules of their usage. Thg whwriting instructions is also called instruatio
syntax. The instructionsnbvl p” and “got t 0”, in the following example, are recognized by the
PIC16F887 microcontroller as an error since theyrat correctly written.

Correctly written commands:

movlw H' FEF'
goto Start

Incorrectly written commands:

movlp Hf FF/
gotto Start

OPERANDS

An operand is a value (an argument) upon whichirteuction, named by mnemonic, operates.
The operands may be a register, a variable, allitenstant, a label or a memory address.

Using operand :

movlw H Q1F -=-
movwf LEVEL

}

operand as a variable LEVEL operand as a constant
stored in the microcontroller
memory

DIRECTIVES

Unlike instructions being written to on-chip programemory after compilation, directives are
commands of assembly language itself and do noécitjr affect the operation of the
microcontroller. Some of them must be used in ey@ggram while others are only used to
facilitate or enhance the operation. Directives\arigten to the column reserved for instructions.
The rule which must be observed allows only onedtiive per program line.

This section covers only a few of the most commardgd directives. It would certainly take up
too much space and time to describe all the direstirecognized by the MPLAB program.
Anyway, a complete list containing all directivedhiish MPLAB assembler can understand is
provided inHelp.

176

PROCESSOR Directive

This directive must be written at the beginning eafch program. It defines the type of the
microcontroller which the program is written folorFexample:

Processor 16f887
EQU directive

This directive is used to replace a numeric valpalsymbol. In that way, some specific location
in memory is assigned a name. For example:

MAXIMUM EQU H’25’

This means that a memory location at address 2%.)(® assigned the name “MAXIMUM”.
Every appearance of the label “MAXIMUM” in the pmagn will be interpreted by assembler as
the address 25 (MAXIMUM = H’25’). Besides, symbatgy be defined this way only once in a
program so that this directive is mostly used atlibginning of the program.

ORG directive

This directive specifies a location in program meynshere the program following directive is to
be placed. For example:

ORG 0x100
START

ORG 0x1000
TABLE

This program starts at location 0x100. The tabletaaing data is to be stored at location 1024
(1000h).

END directive

Each program must be ended by using this direcvee a program encounters this directive, the
assembler immediately stops compiling. For example:

END ;End of program
SINCLUDE directive
The name of this directive tells enough about itgopse. During compiling, it enables assembler

to use data contained in another file on a comphaed disc. For example:

#include <p16f887.inc>

177

CBLOCK and ENDC directives

All variables (their names and addresses) that allused in a program must be defined at the
beginning of the program. Because of that it is netessary to specify the address of each
specified variable later in the program. Insteadhat, it is enough to specify the address of the
first one by using directive CBLOCK and list alhets afterwards. Compiler automatically assigns
these variables the corresponding addresses awrqearthey are listed. At last, directive ENDC
indicates end of the list of variables.

CBLOCK 0x20
START ; address 0x20
RELE ; address 0x21
STOP ; address 0x22
LEFT ; address 0x23
RIGHT ; address 0x24
ENDC

IF, ENDIF and ELSE directives

These directives are used to create so called womali blocks in a program. Each of these blocks
starts with directive IF and ends with directive HN or ELSE. A statement or a symbol (in
parentheses) following the directive IF represent®ndition which determines which part of the
program is to be compiled:

» If the statement is correct or the value of a symb@qual to one, program compiles all
instructions written before directive ELSE or ENDIF

» If the statement is not correct or the value ofyal®ol is equal to zero, only instructions
written after directives ELSE or ENDIF are to bengoled.

Example 1:

IF (VERSION>3)
CALL Table 2
CALL

ENDIF

If the program is released after the version 3téstant is right) then subroutines “Table 2” and
“Extension” are executed. If the statement in ptreses is wrong (VERSION<3), two instructions
calling subroutines are ignored and will not be pded therefore.

Example 2:

If the value of symbol “Model” is equal to one thérst two instructions after directive IF are
compiled as well as instructions after directive[®N (all instructions between ELSE and ENDIF
are ignored). Otherwise, if Model=0 then instructidoetween IF and ELSE are ignored, whereas
instructions after directive ELSE are compiled.

IF (Model)
MOVFW BUFFER
MOVWF MAXIMUM
ELSE

178

MOVFW BUFFER1
MOVWF MAXIMUM
ENDIF

BANKSEL directive

In order to access some SFR register it is negessaelect the appropriate bank in RAM memory
by using bits RPO and RP1 of the STATUS registéis Tirective is used in that case. Simply,
since “inc” data file contains the list of all retgrs along with their addresses, assembler knows
which bank corresponds to which register. Aftercemtering this directive, assembler selects the
bits RPO and RP1 for the specified register oowa. For example:

BANKSEL TRISB
CLRF TRISB
MOVLW B’01001101°
BANKSEL PORTB
MOVWF PORTB

EXAMPLE OF HOW TO WRITE A PROGRAM

The following example illustrates what a simplegram written in assembly language looks like.

;Program to initialize port B and set its pins to logic one (1)
;Version: 1.0 Date: 03.05.2007 MCU: 16F887 Programmer: Jochn Smith
Header
;Configuring microcontroller
PROCESSCOR 16£887
inelude “picl6f8B87ine”
Directive N
L _CONFIG CP_OFF& WDT OFF& PWRTE ON& XT OSC
Comment I ;Start of program
ORG 0x00 ;Reset wvactor
goto Main
Operand > =
= 't ;Interrupt vector
goto~MaEIn ;No interrupt routine
Label ™ | Main ;S8tart of program
banksel TRISE ;Selact bank containing TRISB
clrf TRISE ;Port B is configured as output
Instruction banksel FORTE ;Saelect bank containing PORTE
> # OxEf sw=1111 1111
SUWE PORTE ;PORTE=1111 1111
Ll goto Ll /Go to label L1 or remain here
End ;End of program

Apart from the regular rules of assembly langudbere are also some unwritten rules which
should be observed during program writing. One hadnt is to write in a few words at the

179

beginning of a program what the program’s namwist it is used for, version, release date, type
of the microcontroller it is written for and thema of the programmer. Since these data are not of
importance for assembler, they are written as ancemt which always starts with semicolon *;’
and can be written in a new line or immediatelgiaft command.

After writing this general comment, it is time telect the microcontroller by using directive

PROCESSOR. This directive is followed by anothesg aosed to include all the definitions of the

PIC16F887 microcontroller’s internal registers lre forogram. These definitions are nothing but
ability to address port B and other registers aRP®instead of 06h, which makes the program
clearer and more legible.

In order the microcontroller may operate propeal\several parameters such as type of oscillator,
state of the watch-dog and internal reset circuisivbe defined. It is done by means of the
following directive:

_CONFIG _CP_OFF& WDT_OFF&PWRTE_ON&XT_OSC

When all necessary elements are defined, the mookeprogram writing can start. First and
foremost, it is necessary to specify address frdnchvthe microcontroller starts when the power
goes on dqrg 0x00) as well as address from which the program pracesith execution if an
interrupt occursdr g 0x04). Since this program is very simple, it is enotglise commandyot o

Mai n” in order to direct the microcontroller to the bagng of the program. Next command selects
memory bank 1 in order to enable access to the BR&gister to configure port B as output
(panksel TRI SB). The main program ends by selecting memory baakdsetting all port B pins
to logic one (1)fovl w OxFF, novwf PORTB).

Besides, it is necessary to create a loop to keagram from “getting lost” in case an error occurs.
For that purpose, there is an endless loop execaltethe time while the microcontroller is
switched on.

“end” is required at the end of every program to infoassembler that there are no more
commands to be compiled.

DATA FILES RESULTING FROM PROGRAM COMPILING

The result of compiling a program written in assgntbnguage are data files. The most important
and most commonly used data files are:

» Executive data file (Program_Name.HEX)
» Error data file (Program_Name.ERR)
» List data file (Program_Name.LST)

The first one contains compiled program which edied into the microcontroller. Its contents give
no information of importance to the programmer tswiil not be discussed here. The second one
contains errors made in writing process and dedelbtethe compiler during compiling process.

Errors can be also detected in data file list, Whikes more time, so the error data file is more
suitable for long programs.

The third one is the most useful for the programriterontains many information on commands
and variables locations in on-chip memory as wek@aor signalization. There is a symbol table at

180

the end of each data file list containing all tkmbols used in a program. Another useful elements
of data file list are memory usage map and er@dissic provided at the very end of the file list.

MACROS AND SUBROUTINES

The same sequence of computing instructions is llysuaed repeatedly within a program.
Assembly language is very demanding. The programsnequired to take care of the least detail
when writing a program, because only one wrong camdror label name may cause the program
does not work properly or does not work at all. fElfigre, it is less tedious and less error-prone to
use a sequence of instructions as a single progtatement which works properly for sure. To
implement this idea, macros and subroutines are. use

MACROS

A macro contains programmer-defined symbols thadtfor some sequence of text lines. It is
defined by using directive macro which names maword arguments if needed. Macro must be
defined prior it is used. Once a macro has beennabkf its name may be used in the

program.When the assembler encounters macro’s rianeplaces it by the appropriate sequence
of instructions and processes them just as thobglyg have appeared in the program. Many
different macro-instructions are available for was purposes, eliminating some of the

repetitiveness of the programming, as well as sigipgy the writing, reading and understanding of

the program. The simplest use of macros may ba&gigi name to an instruction sequence being
repeated. Let us take for example global interamatble procedure, SFRs' bank selection.

macro_name macro argl, arg2...
;equence of instructions
.e;ﬁdm
The main difference between macros and subroutinbgt macro is after compiling replaced by

its code (enables the programmer to type lesshay also have arguments while subroutine uses
less memory, but does not have arguments.

The following example shows four macros. First twacros select banks, the third one enables
interrupt, whereas the fourth one disables intérrup

bankO macro : Macro bankO
bcf STATUS, RPO ; Reset RPO bit
bcf STATUS, RP1 ; Reset RP1 bit
endm : End of macro

bankl macro : Macro bankl1
bsf STATUS, RPO ; Set RPO bit
bcf STATUS, RP1 ; Reset RP1 bit

endm ; End of macro

enableint macro ; Global interrupt erabl
bsf INTCON,7 ; Set bit
endm ; End of macro

disableint macro ; Global interrupt digab
bcf INTCON,7 ; Reset bit
endm ; End of macro

181

Macros defined in this way are saved in a particdéda file with extension INC which stands for
INCLUDE data file. As seen, these four macros do mave arguments. However, macros may
include arguments if needed.

The following example shows macros with argumem®® is configured as input if the
corresponding bit of the TRIS register is set tgidoone (bankl). Otherwise, it is configured as
output.

input macro argl,arg2 ;Macro Input

bank1l ;Bank containing TRIgisters
bsf argl,arg2 ;Set the specified bitlput)
bank0 ;Macro for bank 0 setatt
endm ;End of macro

output macro argl,arg2 ;Macro Output

bank1l ;Bank containing TRIgisters

bcf argl,arg2 ;Clear the specified@#Output)
bankO ;Macro for bank 0 satatt

endm ;End of macro

Macro with arguments may be called in the follownay:
output TRISB,7 ;Pin RB7 is configured as output

When calling this macro, the first specified argntERISB is replaced by the first argumaing1
in macro definition. Similarly, number 7 is repldday the argumerdrg2, and the following code
is generated:

bsf STATUS, RPO ;Set RPO bit = BANK1
bcf STATUS, RP1 ;Reset RPO bit = BANK1

bcf TRISB,7 ;Configure RB7 as output

bcf STATUS,RPO ;Clear RPO bit = BANKO
bcf STATUS,RP1 ;Clear RP1 bit = BANKO

It is clear at first sight that the program becomese legible and flexible by using macros. The
main disadvantage of macro is that it occupieg aflomemory space because every macro name in
a program is replaced by its predefined code. Owinthe fact that program often uses macro,
everything is more complicated if it is long.

callc macro label ;Macro callc
local Exit :Define local Label within macro

bnc Exit ;If C=0 jump to Exit

call label ;If C=1 call subroutine at adsge_abel(out of macro)
Exit :Local Label within macro

endm :End of macro

182

In case a macro has labels, they must be defindatakones by using directive local. The given
example contains macro which calls a subrouttra¢!(| abel in this case) if th&€arry bit of the
STATUS register is set. Otherwise, the first follogrinstruction is executed.

SUBROUTINES

Asubroutine contains a sequence of instructionginisewith a label (subroutine_name) and ends
with commandreturn or retlw. The main difference comparing to macro is thdirsutine is not
replaced by its code in the program, but programpjsl to subroutine to execute it. It happens
every time the assembler encounters commealt Subroutine_namen the program. On the
commandreturn, it leaves a subroutine and continues executiom fwhere it left off the main
program. Subroutine may be defined both prior aruihe call.

Label ;subroutine name is ‘Label’

sequence of instructions. . .
sequence of instructions. . .
sequence of instructions. . .

return or retlw

As seen, concerning macros, the input and outuutnaents are of great importance. Concerning
subroutines, it is not possible to define argumevitkin the subroutine itself. However, variables
predefined in the main program may be used as stibeoarguments.

A logical sequence of events is as follows: defymirariables, calling subroutine which uses them
and at the end reading variables changed uporxgwigon of subroutine.

The program in the following example performs additof two 2-byte variables ARG1 and ARG2
and moves result to the variable RES. When 2-bgirgables are used, it is necessary to define
higher and lower byte for each of them. The progitseif is very simple. It first adds lower bytes
of variables ARG1 and ARG2 and higher afterwartithe sum of addition of two lower bytes is
greater than 255 (maximal byte value) the remairgladded to the RESH variable.

; Program to add two 16-bit numbers
; Version: 1.0 Date: April 25, 2007 MCU:PIC16F887

PROCESSOR 16f887 ; Defining processor
#include "p16f887.inc" ; Microchip INC datadea
__CONFIG _CP_OFF & _WDT_OFF & PWRTE_ON & X3SC

Cblock 0x20 ; Beginning of RAM

ARG1H ; Argument 1 higher byte
ARGI1L ; Argument 1 lower byte
ARG2H ; Argument 2 higher byte
ARG2L ; Argument 2 lower byte
RESH ; Result higher byte

183

RESL ; Result lower byte

endc : End of variables
ORG O0x00 ; Reset vector
goto Start
Start : Write values to variables

moviw 0x01 ; ARG1=0x0104
movwf ARGI1H
movlw 0x04
movwf ARGI1L
moviw 0x07 ; ARG2=0x0705
movwf ARG2H
moviw 0x05
movwf ARG2L
Main ; Main program
call Addl6 ; Call subroutine Add16
Loop goto Loop ;Remain here
Add16 : Subroutine to add two I6Ambers
clf RESH ; RESH=0
movf ARGI1L,w ; w=ARGI1L
addwf ARG2L,w ; w=w+ARG2L
movwf RESL ; RESL=w
btfsc STATUS,C ; Is the result greater tRab?
incf RESH,f ; If greater, increment RESiHone

movf ARG1H,w ; w=ARG1H
addwf ARG2H,w ; w=w+ARG2
addwf RESH.,f ; RESH=w

return : Return from subroutine
end ; End of program
MPLAB

MPLAB is a Windows program package which enablesy garogram writing as well as easy
program development. It is best to describe it egelbpment environment for some standard
program language designed for PC programming. MPE&dBnically simplifies some operations
consisting of a lot of parameters, which until IBEvironment* has appeared, were executed from
command line. However, tastes are different antl thiere are some programmers who prefer
standard editors and command line compilers. Egsygram written in MPLAB is clear, but there
is also help documentation- just in case.

INSTALLING MPLAB
MPLAB consists of several parts:

» program which sorts data files of the same prajgctone group (Project Manager)
» program for text generating and processing (TexioEd
» simulator used to simulate the operation of a @ogloaded into the microcontroller

Besides, there are also built in programmers sadRl@Start Plus and ICDn Circuit Debugger)
that can be used to program software into PIC roamtroller device. Since not being the subject
of this book, they are mentioned as options only.

184

In order to start MPLAB, your PC should contain:

» PC compatible computer belonging to class 486 tiebe
* Any Windows operating system

* VGA graphic card

* 8MB memory (32MB recommended)

» 200MB available hard disc

* Mouse

MPLAB installation comes first. Data files from MRB CD should be copied to a hard disc.
Every window has a push-button enabling returrhtogrevious window so that possible mistakes
should not cause any problem nor be a stressfudreqce at all. The process of installation is
similar to almost all other Windows programs instins. First of all a welcome window appears,
then options to select and at last installatioelfitsAfter all, a message notifying that the progra
is successfully installed and ready for use appéaesyou ready?

*IDE stands for “Integrated Development Environnient
Steps to follow prior the installation:

Start Microsoft Windows

Insert the CD into CD ROM

Click START and select option RUN

Click BROWSE and select CD ROM drive
Find folder MPLAB on CD ROM

arwnE

Everything is ready now to start installation. Tiedowing pictures describe some installation
steps.

Install MP760a.exe
B Setup Launcher
! Microchip Technology Inc.

Click on this icon to start up the process...

InstaltShield Wizard

MPLAB Tools w7 B0 Setup iz prepanng the InstalS heedd Wizad,
i which will guide you thiough the progiam sslup process. Pleass
wall.

Checking Dperating Sysbem Varzion

AR B

Something is going on... Picture coming up indisatieat the process of installation has just
started!

185

MPLAB Tools v7. 60 X
MPLAB® Tools §.61 Installation

‘helcome to the MPLAE® T ools Irstalation Program
It 15 strangly recommended thit pou lollow these diechons

1. Gt all applicatiors: before instaling thiz product.

2 Uringtall ol previows MPLAR Tools By wersions.

3 Drisable ary artevrus soflware running on the machine

4. ‘w'hen uging the WEB Irstal, use the Broweer Inbemet
Dplionz to Delete Files fiom the [nteenst Tamp Dinaciony.

Caneal

Next window contains the word “Welcome”. Need exyaiton?
Actually, the program reminds you to close all a&tprograms in order to not interfere the

installation process. Next- of course!

MPLAB Tools v7.60 X
License Agieament
Fleate read the lolovwang boerse sgieemeant carefully. ® MII:HU:HF
MPORTANT. -

YOU MUOST ACCEPT THE TERME AND CONDITIONS OF THES LICENEE
ACREEMENT TO RECEIVE A LICENSE FOR THE ACCOMPANYING
SOFTWARE. TO ACCEFT THE TERMSE OF THIS LICENSE, CLICK 1
ACCEPT™ OR OFEN THIS PACKAGE AND PROCEED WITH THE
DOWHLOAD OR IMSTALL. IF YiOU DO NOT ACCEPT THESE LICENSE
TERMSE, CLICE. “I DO MOT ACCEFT,” OF DO HOT CPEN THIS PACK.AGE,
DOWNLOAD, OR [NSTALL THIS SOFTWARE.

MPLAB ™ IDE LICENSE

% | accepl the leems of the icenss apresmart Bl

| donot accept the terms of the bcense agresment

< Back B » Cancal |

Prior to continue, you have to accept the MPLABwafe license conditions. Select the option “I
accept” and click NEXT.

186

MPLAB Tools w7.60

Setup Type
Select lhe selup hype bo irstall @ Mll:ﬂﬂ:HF

Fleaze salact a elup type.

* Complele
mﬂ All progrem Peatures will be installed (Aequres the most disk. space |

" Cusstom

Selact whach program feabunes pou want instaled. Recommended for
advanced users.

« Back Maul » Canesl

Do you want to install the entire software? Whyoonplicate? Next...

MPLAB Tools w7.60

Chooze Destination Location

Select lalder whaie s=tup wall instal files @ MI:HEHF

Setup will inctal MPLAE Took: v7.600in the followirg folder.

To instal b this foldes, chck Mext. Ta inslall o & ditteren foldes, chck Browse and select
anclber folde.

Destinalion Folder
Cr\Program Filer\Micrachip! Browse

< Back B » Cancal |

Similar to other programs, MPLAB should be alsdaiied into a folder. It may be any folder on
any hard disc. If it is not necessary to make schenges, select the specified address and click
Next.

187

MPLAB Tools w7.60

Application Maestro License

MPLAB Tools v/7.60

Stai Copying Files

AR | MPLAB Toals v7.60
Selup Status
ron ﬁ\ MICROCHIP
D]
izl; MPLAE Took: +7.60 i configuing pour new softwars installation.
AaY ET;]
IF Em
o

rr;j I L MiciochiphHMPASM SutehTemplatehDbject\RFS034G TMPOLASM

|

ANNEENRENENEEEEEEER

_ Cencel |

Another license, another acceptance of option §pdddy the computer... Next, Next...
Be patient!

MPLAB Tools v7.60

InztallShield Wizard Complete

The Inztalls hield \Wizaed has successhalp instalied MPLAB
Toals w7 B0 Befors you can use the program, youw mush reshark
poLE compuler,

& Yoz, | want ko restart my compuber o |

7 Mo, | vl restart my computer later

Remove any deks from ther doves. and then chick Finish bo
camplets sebup

Finally! This is what you have been waiting for.idRl Finish. The computer will be reset along
with the program saved on hard disc. EverythinQks
Click the MPLAB desktop icon in order to start hgram and learn about it.

188

an MPLAE IDE 7.60
Fle Edt Vew FProject Oebupger Programmer Took Configure Window Help
DoFd | ‘tmE = Mo ? g i o

W Untithod Wor... 0

Buld | Version Conol | Find in Files |

As seen, MPLAB is similar to most Windows prograpart from working area, there are menu
(contains options: File, Edit etc.), toolbar (consadifferent icons) and status bar at the bottdm o
the window. Similar to Windows, there is a rulehave shortcuts for the most commonly used
program options created in order to easily acceemtand speed up operation therefore. These

shortcuts are actually icons below menu bar. Ireothords, all options contained in toolbar are
contained in menu too.

PROJECT-MAKING

Follow these steps to prepare program for loadinhg the microcontroller:
1. Make a project
2. Write a program

3. Compile it

In order to make a project, it is necessary tokclice option “PROJECT” and “PROJECT
WIZARD” afterwards. A welcome window appears.

189

'En:it Wiew Debugger]

Project \Wizard...

New... Project Wizard @

- Welcome!

Thiz wizard helps pou create or configure a new MPLAR IDE
project.

To continue, click Mext

Project Wizard

Step One:

Select a device Fa;';g.

FIC 67913
FIC1EF314
PIC1EFT1E
BIC1EFE 7
FIC EFA4E
FIC BHV54D
PIC1BHVETD
PICBHVETE
FIC1 EHYTES
FICI 7C42 Coneel | [Hep
FICT TC428

Keep on project-making by clicking NEXT. Then seldg® microcontroller for use.

In our case, it is PIC16F887 microcontroller.

At the end, the project is assigned a name whidallysindicates the purpose and the content of
the program being written. The project should bevedoto desirable folder. It is best the folder
associates with PIC microcontrollers (See figure).

190

Project Wizard

Step Twa: Eﬁ
Select a looksuba
alanguage looku /é.}
Artve Toolmte: Microchip MPASM Toolsuile

Toolsuite Contents

Project Wizard

MPASM Azsembler [mpasmwin. sxe]

MPLINK Object Lirker [mpirk. exe Step Thiee: =1
MPLIE Libwatian [mplib.exe] Craabe a mew project, of reconfigune the active project? %f,
ﬁp‘.
Locahon

C:\Program Files\MicrochipMPASH Suil (%) Comste Mew Progct File

Probs [some.]

| Hekl My Suite lant Listed |

[¢ Back || Mewt » Il Cancel]l Help

Documents contained in the project do not alwaysdn® be written in MPLAB. Documents
written in some other program may be also includiethe project. In this case, there are no such
documents. Just click Next.

Project Wizard

Step Four: Eﬁ 5

i ensigting lles bo your project

. Summary

Chek “Firigh' 1o create/canligues the praject with these
parameters.

Praject Fasmeles

Dewicer PICTEFEST

Toolsuke: Microchip MPASM T oolsute
File: D-WPIC projekiProba. mep

A new workspace vl be crealed, and the new project added
to that workspace.

| <Back || Frsh | | Comcel | | Hep |

Click FINISH to complete the project. The windowslf contains project parameters.

191

WRITING A NEW PROGRAM

When the project is made, a widow shown in figuskoly appears.

Proba - WPLAB IDE v7.60

Ble Edt Wew Froject Debugger Proganmer Tooks Corfigere Window belp
| D Ed ‘| =AY Reesse o o D B0 | S EE | Checkovm: 2B

The next step is to write a program. Open a newghent by clicking File>New. Text Editor in
MPLAB environment appears.

Save the document in the folder D:\PIC projectaubing the File>Save As command and name it
“Blink.asm” indicating that this program is to be example of port diode blinking.

192

After the “Blink.asm” is created and saved, it slidoe included in the project by right click on the
“Source Files” option in the “Proba.mcw” window. taf that, a small window with two options
appears. Select the first one “Add Files”.

Click on that option opens another window containihe folder PIC along with the document
Blink.asm. See figure below.

Add Files to Project

Lack in: | L PIC projeki | O e E-

(%] Bilink. asm

M Proba.mcw f_-j@b_ﬂ

o [Prnlla.rﬂ:p‘

= 1=
File name: | 4] Biink. asm
= Haader Filas
Filez of tppec | Assembly Souce Files [".asm)] Objesct Files
—J Library Files
Jusng b Froject Direchony] Linker Seripts
] Other Flles

[] Remember thiz setting
(%) Autcr Let MPLAR IDE guess

() Uses: File[s) were cieated aspecially for this proj
D Systern: Filefs] ane axtemal bo project, use shaok

[Fles | * Symboks

Click “Blink” to include the document Blink.asm mthe project.
Program writing

The program writing procedure cannot start untilpsevious operations have been performed.
Program written below is a simple illustration ebject-making.

;Program to set port B pins to logic one (1).
;Version: 1.0 Date: April 25,2007 MCU: PIC16F88b&mammer: John Smith

;¥+%* Declaration and configuration of the microoroller *****
PROCESSOR 16887
#include "p16f887.inc"
__CONFIG _CP_OFF & WDT _OFF & PWRTE_ON T _OSC

*x%%% \/ariable declaration *****

Cblock 0x20 : Firstér RAM location
endc : No vates

;¥ Program memory structure *****

ORG 0x00 ; Resattoe
goto Main ; Afterse jump to this location

193

ORG 0x04 ; Interrwector

goto Main ; No imept routine

Main ; Starethrogram
banksel TRISB ; Seleank containing TRISB
cirf TRISB ; Port B ¢configured as output
banksel PORTB ; Selenibcontaining PORTB
moviw Oxff ; W=FF
movwf PORTB ; Move Wort B

Loop goto Loop ; Jumpabel Loop
End

The program should be written to the ‘Blink.asmhdow or copied from disc by means of options
copy/paste When copied, the program should be compiled @xtecutable HEX format by using
option PROJECT -> BUILD ALL. A new window appeai$ie last sentence is the most important
because it tells us whether compiling has succeededot. Clearly, 'BUILD SUCCEEDED’
message means that no error occurred and comp#éisipeen successfully done.

In case some error occurs, it is necessary to t¢lgke on the message referring to it in the
‘Output’ window, which automatically switch you aveo assembly program, directly to the line
where the error has occurred.

Proba - MPLAB IDE ¥7.60
Fie Edt “iew Project Debugger Programemer Took Configure Window Help

DFd 6 SART Aeesse T Sl B @ &5 E | Checksum: 126K

B Proba.mow
- :I Proba.mcp® _) S —
N T B D: \PIC projeltiBlink® E |||:||')?|
Elink_aam sProgran Ta setovanie pinova porta B na loglcku jedindow. -
(5 Header Fies :Weesija: 1.0 Damus: 25.04.2007 MCU: PICLEFEET| Pisas: Patar Petrevis
(20 cibject Files
(20 Library Files
2 Linker Seripts PROCESSOR L6 EBET
(20 cther Fies #include “plEfes?.inc”

Deklaracija i kenfigurisanjs mikrckontrolezm *****

__CONFIG _CP_OFF 4 _WDT_OFF & _PWRTE_ON & _MT_0SC
;TTEET Daklaracija prowenjivik TeeEw

Colock OwOC i Focetak RAM-a
; Mems promanliivik

ORS (1T L] s Hamet wvecear
goco Hain ; Posle reseca shocl na owva lokaciju

ORG Dimi0-4 i Interapt wector
gaea Hain } nams interapt rutins

Main ; Pacetak programa
banksel TRISE i Selehtuw) baku u kojo) Je TRISE
€l f TRISE i Pore B j@ dizlazni
bankszel FORTE 5 Selehtul baka u kojol je FORTE
mawle Ozff 4 W=FF
wovwt PORIE i Postavi sve Jedinice na port B
Leep gets Loap ; Ekeeci na labslu Lesp

Bnd

| PICIEFBET Wi zdcc hank.0 LnZ, Col 46 NG WR |

194

SIMULATOR

Asimulator is a part of MPLAB environment which pides better insight into the operation of the
microcontroller. Generally speaking, a simulatieran attempt to model a real-life or hypothetical
situation so that it can be studied to see howsttstem works. By means of simulator, it is also
possible to monitor current values of variablegjsters and port pins states as well. To be honest,
a simulator is not of the same importance for atigpams. If a program is simpler (as in our
example), the simulation is not of great importaheeause setting port B pins to logic one (1) is
not complicated at all. However, in more compleagsgams containing timers, different conditions
and requests (especially mathematical operatiding)simulator may be of great use. As the name
itself indicates, a simulation means to simulate tperation of microcontroller. Like the
microcontroller, a simulator executes instructiame after another (line by line) and constantly
updates the state of all registers. In that wag,uber simply monitors program execution. At the
end of program writing, the user should first tésin simulator prior to execute it in a real
environment. Unfortunately, this is one of many @dlings being ignored by the man because of
its character as such and lack of high-quality $ataus as well.

Debugger
Select Tool 2 v None

Clear Memory P 1 MPLAB ICD 2

3 MPLAB 5IM

4 MPLAE ICE 2000

6 PICkit 2

Simulator is activated by clicking on DEBUGGER >L&ET TOOL > MPLAB SIM, as shown in
figure. As a result, several icons related to satarlonly appears. Their meanings are as follows:

b

Starts program execution at full speed. In thigcasnulator executes program at full speed until i
is halted by clicking the icon below.

Halts program execution at full speed. Programamartinue executing step by step or at full speed
again.

b

Starts program execution at optional speed. Theedspef execution is set in dialog
Debugger/Settings/Animation/Realtitdpdates.

195

[

Starts step-by-step program execution. Instruct@mesexecuted one after another. Furthermore,
click on this icon enables to step into subroutiswed macros.

o

This icon has the same function like the previows except the ability to step into subroutines.

El

Resets microcontroller. By clicking this icon, gii®gram counter is positioned at the beginning of
the program and simulation can start.

Similar to real environment, the first thing thabsld be done is to reset the microcontroller using
the option DEBUGGER > RESET or by clicking resaincAs the consequence of that, a green
line is positioned at the beginning of the progrand program counter PCL is cleared to zero.
Refer to the windovpecial Function Registeshown below.

iew

M 5pecial Function Registers

v Project
Bl
v Output gr—
INDF S ————
Toolbars [THRO 00000000

PCL oonooooo
ooz STATUS Qo000000
F3R QoDo00m0
PORTA 00000000
PORTE 0oDooono
PORTC alulululnlululs

Disassembly Listing

EEPROM PORTD 0a000000
4 . oos FORTE QoO00000
File Reqisters DOR PCLATH 0o000D00
008 INTCON 00000000

Hardware Stack ooc PIRL 00000000
ooo FIEZ 00000000

00E THEL 00000000 Q0000000

ODE THE1L Qooooono

Locals DOF THR1H 00000000
Prugram Mernl:r'r- oi0 T1CON [n[n]nw]nluluin}
011 THEZ 000D0o0D

- 01z TZCOM 00000000

013 SEPEUF 00000000

Watch 014 SSPCON 00000000
015 CCPRL 00000000 Q0000000

015 CCPRIL 00000000

1 Memory Usage Gauge 016 CCFRLH 00000000
017 CCPLCON 00000000

. 018 RCSTA 00000000
5||T||.||atl:lr Trﬂfe ois TEREG Qoo0000o0

RCREG QO000DD0D

Simulator Logic Analyzer

Apart from SFRs, it is good to have insight in Fiegisters. A window containing them appears
by clicking the VIEW->FILE REGISTERS option.

196

If the program contains variables, it is good tonitar their values as well. Each variable is
assigned a window (Watch Windows) by clicking VIEXWATCH option.

Bl e s Do Qiagee Pogiene ek [aviees gvdom e

D LY BE T TN

W PR D Ealisi

e = @ B0 S A | Checsen b6 || b0 F R R

= | W Spacisl §nctiss Aegiie

Main

INrOoCImMEUMFCOUDURRMALUNSNOCOURFEORA oL RmELREG

- Binacy Chaw &
__CORTIG _COWFIGL; _LVA _OFF & DCMEN_OM & _IESO OFF & _DOR_OFF & _CPD OFF & & . " = D— °
CONEIG CONPLIGE, _MET_OFF & _BooZlv TEED o .
= 48 ooann,
il Dsklarsacijs promsnjiwik === ITATRS b LR N 11X
m oo
P al Ll e PORTA [DO
) Doklaceclia peomeniivil FORTH Iy e
PORTC ol L]
Cklack Ox20 ;7 Pocetmk RAH-a roRTR m HER
HI==t PORTL o Jooraidii]
Loowt PILATE m L
e — NTOE (] Latiin]
_ ram m DI
. FIRZ L] L=
LLL TEEL] TAEKITANED
TEELL ol Jooiaidii]
FLCEET Strukters programEks memcrije Seses TERLY Lo TrEEInE
T30 (] L3 {mr]
) . - ™ m BINONG
L= 1] D | Bagat VeoLoE e o DO
gota Hain anrrar m POIOONg
EElans] ol fooisidii]
oG Du0d i InEarapt veckor csrmL sonn EEIEON
CCFRLL (] L]
gass Hain ! nEmA LTEACEpEt TUubins e -

banksel TRIAR prograsa madresa | 00| ol 60|53 w4) os) 8| o7 | on| o¥| on| oe| o] op| or] or
Eat TRIGA O ™ - OF &b LT 00 00 00 00 00 00 00 00 00 00 00 00 -.-
bat TRIZA, 1 Ol 02 09 03 02 00 03 00 OO OO OO 00 OO B0 O Mmoo,
alrf - DX 0D OF 00 00 00 00 00 00 00 00 00 OO B0 00 00 DD ..
@ O 02 09 00 03 00 00 00 OJ OO OO 00 OO OO 0O O o,
- S D81 03 00 00 00 00 00 01 01 01 00 00 00 00 OO DO DO ..
=lrt =nt 0¥ 0505 03 00 00 0D 00 00D mmmmm o,
DE] 0D OF 00 00 00 00 00 00 00 00 00 00 00 00 DO D ...
Leop BuTTon PORTA, 0. B Poveca) UM 0209 00 03 00 03 00 0O OO OO 00 OO KO O Mo,
Eakbom FORTA, 1. 0, Smanii 33 -~ FF EF LD O3 FF 00 FT FF OF 00 OO 00 00 10 &0 -.-
. N . : DS] 02 03 TP 03 00 FF OO OO OF OO OO 0O KO OL 0,
L i Ok 00 00 00 00 00 03 00 00 00 00 00 00 00 DO DO DO ...
DN 02 09 00 09 00 03 00 0O OO OO 00 0O OO Mmoo,
D00 0D OF 03 00 00 O3 00 00 00 00 00 0O 00 OO DO 0D ...
Povecay incf cnt, MM 03 09 00 09 00 03 00 00 0D OO0 o0 DO OO DO oo,
- [GEY 00 O OF O3 OF 03 00 060 00 OO 00 O O 00 D0 Bd ...
. o 0209 00 09 0 03 O m
e hoTRETE e n s e
E Ly Loop a 08 08 03 03 09 03 0 W o0 on
i AR W o 0 el e L e
Emandi dael ek, f = LB 2mroe Pl
Bt Qe] Pt s
mawaf FORTH 0 Hinle i
gas Loop g P
Il ik Pl
End ke Sy
0 b Py
o -
4 H ‘wharh | ok | ‘wismei | Vaekel 1 Pl
B]
L] FITIPET e WA Tt ki

If the program contains variables, it is good tonitar their values as well. Each variable is
assigned a window/atch Windowsby clicking VIEW->WATCH option.

After all variables and registers of interest beeoawvailable on the simulator working area, the
process of simulation can start. The next instouctnay be either Step into or Step over depending
on whether you want to step into subroutine or e same instructions may be set by using

keyboard- push-buttons <F7> or <F8> (generally,
corresponding pushbuttons on the keyboard).

aiportant instructions have the

197

Appendix B: Examples

The purpose of this chapter is to provide basiermfation about microcontrollers that one needs to
know in order to be able to use them successfullpractice. This chapter, therefore, does not

contain any super interesting program or devicesetiic with amazing solutions. Instead of that,
given examples are more proof that program writngeither a privilege nor a talent issue but the
ability of simple putting puzzle pieces togetheingsirectives. You will be assure that design and
development of devices mainly comes to the methest-torrect-repeat”. Of course, the more you

are in it the more complicated it becomes sinceptiezle pieces are put together by both children

and first-class architects...

BASIC CONNECTING

As seen in figure below, in order to enable therauontroller to operate properly it is necessary to

provide:

* Power Supply
* Reset Signal

* Clock Signal
O 612V

_r.'-:l |:’ I vec
E ':I f:‘- - &+ 1
a = | LM7805 E
SOl .

S 100uF 10uF
-,::I—'/.

1—['—0 b
1

| mcLr

[} ran

[rai

RESET + [raz

[raz

[raa

[ras

- [rED

- [rE1

[| rE2

[] ndd

[wss

08C1
0SC2

[rco

amHz +-0] E ot
20-30pF 20-30pF [i
L

GMD

L

/88491 0Id

rE7 (1
REE []
rES []
RE4 []
rE3 [I
rBz [I
RE1 []
rE0 (1

vdd [—

ves [}
ro7 []
rDE []
rD5 []
rD4 []
rcy [l
rCE []
rcs [1
R4 []
rD3 [1
rpz []

GHND

Clearly, it is about simple circuits, but it doest mave to be always like that. If target device is
used for controlling expensive machines or maimgjrvital functions, everything gets more and

more complicated! However, this solution is quited for the time being...

POWER SUPPLY

Even though the PIC16F887 can operate at diffeseipply voltages, why to test “Marphy’s
low™?! 5V power supply is so common that it simpiyposes itself. The circuit, shown in previous

198

figure, uses a cheap integrated three-terminatipesiegulator LM7805 and provides high-quality
voltage level and guite enough current to enablerenontroller and peripheral electronics to
operate normally (enough in this case means 1A)!

RESET SIGNAL

In order that the microcontroller can operate priyp@ logic one (VCC) must be applied on reset
pin (It explains the connection pin-resistor 10K-&C Push-button connecting reset pin MCLR to
GND is not necessary. However, it is almost always/ided because it enables microcontroller
safe return to normal operating conditions if sdrimej goes wrong. By pushing this button, OV is
brought to the pin, the microcontroller is resed @nogram execution starts from the beginning.

CLOCK SIGNAL

Even though the microcontroller has built in ostdr, it cannot operate without external
components which stabilize its operation and ddtenits frequency (operating speed of the
microcontroller). Depending on which elements ameuse as well as their frequencies, the
oscillator can be run in four different modes:

 LP - Low Power Crystal

* XT - Crystal / Resonator

» HS - High speed Crystal / Resonator
* RC - Resistor / Capacitor

HS
EC. - RAR gz 140 AAT 8 CLEIN

B [evie Bufer Windows USE About Hibory
Conliguasion Bz

RACA - RAE w10, HAT 55 HC
FiC - FAAE 5= CLEDLIT AAT &5 FC

Code Frotect
O
0000k - 1FFFh | &]

FLASH Program Memory
Write: [reshde Ersse Resnt
= ‘Wile probechon OF
DO, - DOFFh Piodicted | Lol FEEX |

(00K - 07FFh Fiotected Akond HEX]
D00, - OFFFh Fiolexted

oscitator I
Walchdeg Timer Djanksd
Power Up Timer Erubled
master Clear Frablsd
Duiba EE Probect Disblsd
Brnwe Dut Debect 200 D abiesd

Ink-Exkt Swibchover Disatked

I ERIERIEDTERRERIERIER IERIED

Fail-zale Ok Momtor Dbl S HEX
Low Vallage Program Djacked
Tr-Circwit Debugger 10D Dicled P e e
Cal. Ward
[Browan ik Resel Sl psiin 21V
e][|
|[¥ Locstions p m
FFF IFFF IFFF AFFF Clear l
el oo |
Frogean Hemon See BK Do Shata (dle F =] Progress
EEPROH See 256 Bptns fidcesz Fiavinon III

Pilze CD0CUMENTS SN0 SETTINGSUMERE 0] MIKIDESETOFTOUCHPANEL BIGPICEP T TOUCHPANEL MY
Derewe: PICIGARET e shion; Nore

Why are these modes so important? Owing to the tfaat it is almost impossible to make
oscillator which operates stablely over a wide fiextpy range, the microcontroller must know
which crystal is connected in order that it caruatlthe operation of its internal electronics to it
That is why all programs used for chip loading eam an option for oscillator mode selection.
See figure.

199

Quartz resonator

In case a quartz crystal is used for frequencyilstabon, the built in oscillator operates at very
precise frequency which is independent from chamgésmperature and voltage power supply as
well. This frequency is normally labeled on the ragontroller package.

Apart from the crystal, in this case the capaci®isand C2 must be also connected as per scheme
below. Their capacitance is not of great importariberefore, the values provided in the table
should be considered as a recommendation ratheiatk#ict rule.

T Mode Frequency C1,C2

€1
Q _
. 32 KHz 33pF
0sc1
| ' —I:— u P 200 KHz | 15pF
T M 200 KHz | 47-68 pF

GND |
|

G2 4 MHz 15 pF
4MHz | 15pF
HS 8 MHz | 15-33 pF

20 MHz | 15-33 pF

[
e
EE)
&

oscz = XT | 1MHz | 15pF
()
L,

Ceramic resonator

Ceramic resonator is cheaper, but very similaruarg by its function and the way of operating.
That is why the schemes illustrating their conraatto the microcontroller are identical. However,
the capacitor value is a bit different in this cdse to different electric features. Refer to tiaé.

¢t QR [T——
" I T Dusm

455 KHz | 68-100 pF
S | - Duscz XT | 2MHz | 1568 pF

4 MHz 15-68 pF
8 MHz 10-68 pF
16 MHz 10-22 pF

HS

\ PIC16FET

These oscillators are used when it is not necessdrgve extremely precise frequency.

200

RC oscillator

If the operating frequency is not of importancenthtdere is no need to built in expensive
components for stabilization. Instead of that,rapge RC network, as shown in figure below, will
be enough. Since only the input of the local ol input is in use here, clock signal with
frequency Fosc/4 will appear on the OSC2 pin. Faurttore, that frequency represents at the same
time a precise operating frequency of the microdlet, i.e. the speed of instruction execution.

O 3K <R1 < 100K
C > 20pF

External oscillator

If it is needed to synchronize the operation ofesalmicrocontrollers or if for some reason it is
not possible to use any of the previous schemefck signal may be generated by an external
oscillator. Refer to figure below.

M
Juuu JUUUT -
: 0SC1 oo
-
|: 0SsCc2 =
9
2L
—

f

ADDITIONAL COMPONENTS

Regardless of the fact that the microcontrollea igroduct of modern technology, it is not of any
use without being connected to additional compaedimply, the appearance of voltage on the
microcontroller pins means nothing if not used ferforming certain operations (turn something
on/off, shift, display etc.).

This section intentionally covers only the most coomly used additional components in practice
such as resistors, transistors, LED diodes, LEPplays, LCD displays and RS232 communication
circuits.

201

SWITCHES AND PUSH-BUTTONS

There is nothing simpler than switches and puskehat This is definitely the simplest way of
detecting appearance of some voltage on the miotamter input pin and there is no need for
additional explanation of how these components aiperNevertheless, it is not so simple in
practice... Then, what is it all about?

0.01-100mS

Switch off moment

5V

=

o

It is about contact bounce- a common problem wigitimanical switches. When the contacts strike
together, their momentum and elasticity act togettheause bounce. The result is a rapidly pulsed
electrical current instead of a clean transitimnfrzero to full current. Generally, it mostly ocgur
due to vibrations, slight rough spots and dirt et contacts. This effect is usually unnoticeable
when using these components in everyday life bec#us bounce happens too quickly to affect
most equipment, but causes problems in some aralkagl logic circuits that respond fast enough
to misinterprete the on-off pulses as a data stréaryway, the whole process does not last long (a
few micro- or milliseconds), but long enough torbgistered by the microcontroller. Concerning
pulse counter, error occurs in almost 100% of dases

This problem may be easily solved by connectingngle RC circuit to surpress quick voltage
changes. Since the bounce period is not definesl,villues of components are not precisely
determined. In most cases, it is recommended tohgsealues as shown in figure below.

.'~.+5v
mK[LJ [[%
P | Joo [E
== 100nF [| S
T =

If complete stability is needed then radical measwshould be taken! The output of the circuit,
shown in figure below (RS flip-flop), will changtsilogic state only after detecting the first pulse
triggered by contact bounce. This solution is mexpensive (SPDT switch), but the problem is
definitely solved!

202

ii;{
11
Microcontroller

In addition to these hardware solutions, therdde a simple software solution. When a program
tests the state of some input pin and detects rrgehahe check should be done one more time after
a certain delay. If the program confirms the changeneans that a switch/push-button has
changed its position. The advantages of such solwre obvious: it is free of charge, effects of
noises are eliminated and it can be applied tavbrstquality contacts as well.

RELAY

A relay is an electrical switch that opens andesosnder the control of another electrical cirdtiit.

is therefore connected to output pins of the mienbwller and used to turn on/off high-power
devices such as motors, transformers, heaterss,betb. These devices are almost always placed
out of the board with sensitive components. Theeearious types of relays, but all of them
operate in the same way. When a current flows tirotne coil, the relay is operated by an
electromagnet to open or close one or many set®mfcts. Similar to optocouplers, there is no
galvanic connection (electrical contact) betwegwutrand output circuits. Relays usually demand
both higher voltage and current to start operabah there are also miniature ones that can be
activated by a low current directly obtained froom&rocontroller pin.

203

T
Y
-l

5V 24V
| [=
—— | | |
— [/]
— !) 1
—]
X = 2 /
2 — /
o T
e sl
it E —]
- 0k [
E —
™

LGND — GND

Figure on the right shows the most commonly uséatiso.

In order to prevent appearance of high voltageetifisduction caused by a sudden stop of current
flow through the coil, an inverted polarized diadeconnected in parallel to the coil. The purpose
of this diode is to “cut off” the voltage peak.

LED DIODES

You probably know all needed and possible to knbaua LED diodes, but we should also think
of the younger generations...How to destroy a LEDWell...Very simple.

0

0.E
{0 O3G k) K] 10.025? =

204

Quick burning

Like any other diode, LED has two ends- anode aitiode. Place it properly and bring power
supply voltage. The diode will happily emit lighturn it upside down and bring power supply
voltage (even for a moment). It will not emit liglNEVER AGAIN!

Slow burning

There is a nominal, i.e. maximum current determified every LED which should not be
exceeded. If it happens, the diode will emit matensive light, but not for a long time!

Something to remember

Similar to the previous example, all you need toisido discard a current limiting resistor.
Depending on power supply voltage, the effect migghspectacular!

<— ANODE (+) ud
. 'Y (1.6-2.4V)
o usv)
* T o

- * Flaton
<— CATHODE (-)” body flange

‘)‘_
’ ln (20 ili 2 mA)

LED DISPLAY

Basically, LED display is nothing else but sevdrBDs molded in the same plastic case. Diodes
are arranged in a way that different markscommdidits- 0, 1, 2,...9- are displayed by activating
them. There are many types of displays composes#wéral dozens of built in diodes which can
display different symbols. The most commonly useda called 7-segment display. It is composed
of 8 LEDs- 7 segments are arranged as a rectaoigkymbol displaying and there is an additional
segment for decimal point displaying. In order imify connection, anodes or cathodes of all
diodes are connected to the common pin so tha¢ ther common anode displays and common
cathode displays, respectively. Segments are mavikadhe letters from a to g, plus dp, as shown
in figure below. On connecting, each diode is #dateparately, which means that each must have
its own current limiting resistor.

d
—
f g b
9
e C

ammY e dp

d

Here are a few important things that one shouldgtegntion to when buying LED displays:

205

* Depending on whether anodes or cathodes are cauhiecthe common pin, there are common
anode displays and common cathode displays. Fjooge shows a common anode display.
Looking at physical features, there is no diffeeermetween these displays at all so it is
recommended to check carefully prior installatidmak of them is in use.

* For each microcontroller pin, there is a maximunmrexnt limitation it can receive or give.
Because of that, if several displays are connetcteéde microcontroller it is rec ommended to
use so calletlow currentLEDs using only 2mA for operation.

» Display segments are usually marked with the lettesm a to g, but there is no fast rule
indicating to which micro controller pins they slaie connected. For that reason it is very
important to check connecting prior to start prograriting or designing a device.

Displays connected to the microcontroller usuakkgupy a large number of valuable 1/O pins,
which can be a big problem especially when it iedeel to display multi-digital numbers. The
problem is more than obvious if for example it eeded to display two 6-digit numbers (a simple
calculation shows that 96 output pins are needddaincase)! This problem has a solution called

MULTIPLEXING.
Here is how an optical illusion based on the saperaiing principle as a film camera is made.

Only one digit at a time is active, but they chatigar state so quickly that one gets impression
that all digits of a number are active simultanépus

] E— a
| I | b
| I c
| I | d
| I | e
e |
E L_"T"39
o =] dp
o F—
8 x 330R e | 4 x Low current common
E ' E cathode displays
@ L @ @
{j:,, T4
o -~ — 4 T3
S ke Lo '
E E 1 [T2
§ L I T
E H o | ; @
4 x 10K |

—

Here is an explanation on the figure above. Firdbyte representing units is applied on a
microcontroller port and a transistor T1 is actcasimultaneously. After a while, the transistor T1
is turned off, a byte representing tens is appbeda port and transistor T2 is activated. This
process is being cyclically repeated at high sgeedll digits and corresponding transistors.

206

A disappointing fact which indicates that the meontroller is just a kind of miniature computer
designed to understand only the language of zetd®aes is fully expressed when displaying any
digit. Namely, the microcontroller does not knowawlunits, tens or hundreds are, nor what ten
digits we are used to look like. Therefore, eacimber to be displayed must go through the
following procedure:

First of all, in a particular subroutine a multgdal number must be split into units, tens etceff,h
these must be stored in special bytes each. Dggts recognizable format by performing
“masking”. In other words, a binary format of eadhit is replaced by different combination of
bits using a simple subroutine. For example, tigg 8 (0000 1000) is replaced by binary number
0111 1111 in order to activate all LEDs displaytigit 8. The only diode remaining inactive in
this case is reserved for decimal point.

If a microcontroller port is connected to displayad way that bit O activates segment “a”, bit 1
activates segment “b”, bit 2 segment “c” etc., themtable below shows the mask for each digit.

- |0]ofojo]lof1]o]1] Number 5 binary lr'm*;
i, |f|| |h|
;"‘ 0l1]1]o]1[1]0]1] Number 5 mask Ifl—g—gj

L
dpg f edc b a [| [

f" A [
I | | |f"‘|
Le—a—10
\ :
. 7 B8x33R _
il
3 5 pe—
e F— c
Tt |k d
3 (=] e | A
s |& : '
L g
= dp Low current common
i cathode display

Digits to display Display Segments

dp a b C d e f g
0 0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0 0
2 0 1 1 0 1 1 0 1
3 0 1 1 1 1 0 0 1
4 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1
6 0 1 0 1 1 1 1 1
7 0 1 1 1 0 0 0 0
8 0 1 1 1 1 1 1 1
9 0 1 1 1 1 0 1 1

In addition to digits from O to 9, there are sorettdrs- A, C, E, J, F, U, H, L, b, ¢, d, o, r,lHat
can be also displayed by means of the appropriatkimg.

207

In case the common anode displays are used, adl coaained in the previous table should be
replaced by zeros and vice versa. Besides, NPNistans should be used as drivers in that case.

OPTOCOUPLER

An optocoupler is a device commonly used to gabkahy separate microcontroller electronics
from any potentially dangerous current or voltagets surroundings. Optocouplers usually have
one, two or four light sources (LED diodes) on theput while on their output, opposite to diodes,
there is the same number of elements sensitivigho (phototransistors, photo-thyristors or photo-
triacs). The point is that optocoupler uses a shptical transmission path to transfer a signal
between elements of circuit, while keeping thencteleally isolated. This isolation makes sense
only if diodes and photo-sensitive elements areasdply powered. In this way, the
microcontroller and expensive additional electrenéze completely protected from high voltage
and noises which are the most common cause ofogesff damaging or unstable operation of
electronic devices in practice. Most frequentlydusptocouplers are those with phototransistors on
their outputs. Concerning the optocouplers witlerinal base-to-pin 6 connection (there are also
optocouplers without it), the base may be left umexted.

24K 10K
I -
Q
)
=
L =
— ©
Q
| ©
| .
i 1.8
s
1NI|:| — 10N

Galvanically isolated

A broken line in figure above denotes optional awiion which lessens the effects of noises by
eliminating very short pulses.

LCD DISPLAY

This component is specialized to be used with ti@aoontrollers, which means that it cannot be
activated by standard IC circuits. It is used fmpthying different messages on a miniature liquid
crystal display. A model described here is forlatw price and great capabilities most frequently
used in practice. It is based on the HD44780 mamtoller Hitachi) and can display messages in
two lines with 16 characters each. It displaysleiflers of alphabet, greek letters, punctuation
marks, mathematical symbols etc. In addition, ipassible to display symbols made up by the

208

user. Other useful features include automatic ngesshift (left and right), cursor appearance,
LED backlight etc.

' [elclelcleololedolololololololo]o BTN

~ a2 9o @ @ L

@

LCD DISPLAY

Along one side of a small printed board there ans psed for connecting to the microcontroller.
There are in total of 14 pins marked with numbd® ih case the backlight is built in). Their
function is described in table bellow:

Function Pin Number Name Logic State Description
Ground 1 Vss - ov
Power supply 2 vdd - +5V
Contrast 3 Vee - 0-Vdd
4 RS 0 DO - D7 are inte_rpreted as commands
1 DO — D7 are interpreted as data
_ 5 RIW 0 Write data (from controller to LCD)
Control of operating 1 Read data (from LCD to controller)
0 Access to LCD disabled
6 E 1 Normal operating
From1to O Data/commands are transferred to LCD
7 DO 0/1 Bit 0 LSB
8 D1 0/1 Bit 1
9 D2 0/1 Bit 2
Data / commands 10 D3 071 B!t 3
11 D4 0/1 Bit 4
12 D5 0/1 Bit 5
13 D6 0/1 Bit 6
14 D7 0/1 Bit 7 MSB

LCD screen

LCD screen consists of two lines with 16 characéarsh. Every character consists of 5x8 or 5x11
dot matrix. This book covers 5x8 character displayich is indeed the most commonly used one.

209

Display contrast depends on power supply voltagkveinether messages are displayed in one or
two lines. For that reason, varying voltage O-Vddapplied on the pin marked as Vee. Trimmer
potentiometer is usually used for that purpose. &b@D displays have built in backlight (blue or
green diodes). When used during operation, a culiraiting resistor should be serially connected
to one of the pins for backlight (similar to LEDodes).

5K
|:];|‘ Contrast 330R
l . LED backlights

If there are no characters displayed or if alllenh are dimmed upon the display is switched on,
the first thing that should be done is to check plagentiometer for contrast adjustment. Is it
properly adjusted? The same applies if the modepefation has been changed (writing in one or
two lines).

LCD Memory
LCD display contains three memory blocks:

» DDRAM - Display Data RAM
« CGRAM - Character Generator RAM
¢ CGROM - Character Generator ROM

210

DDRAM Memory

DDRAM memory is used for storing characters thatusth be displayed. The size of this memory
is sufficient for storing 80 characters. Some memioications are directly connected to the
characters on display.

All works quite simply: it is enough to configuresglay to increment addresses automatically
(shift right) and set starting address for the rageshat should be displayed (for example 00 hex).

After that, all characters sent through lines DO be displayed as a message we are used to-
from left to right. In this very case, displayiniguds from the first field of the first line becauthe
address is 00 hex. If more than 16 characterseartetisen all of them will be memorized, but only
first sixteen characters will be visible. In orderdisplay the rest of them, a shift command should
be used. Virtually, everything looks as if LCD depis a window which shifts left-right over
memory locations containing different characters.rédality, that is how the effect of message
shifting on the screen has been made.

DDRAM Memory

p First Line Addresses: 00 - 27 hex.
ﬂ|-:H|02103IM|l15hﬁlﬂ?lﬁslﬂﬂhﬂlﬂﬂhclﬂﬂlﬂqﬁ lull I|12’1 3|ld|15|]6|1 ?l]ﬁll?l]Al]BllEl] DllEI]FliDI21I22l23]2dl25IEIZ—?|
|41|42l43|44|45|45|47|43|49[4AF$6|40|4514F sulm Iszlﬂ[“ls,sl“lﬂ Isa]sq If.AlﬁﬂI&Cl&DlSElsFleu |a.1 |az |§3|¢4|65|56|a?|

LCD Display Second Line Addresses: 40 - 67 hex.

If cursor is on, it appears at location which isreatly addressed. In other words, when a character
appears at cursor position, it will automaticallgwe to the next addressed location.

This is a sort of RAM memory so data can be writterand read from it, but its contents is
irretrievably lost upon the power goes off.

CGROM Memory

CGROM memory contains default character map wikltlzracters that can be displayed on the
screen. Each character is assigned to one menmuaiido:

211

4 higher bits of address |

won| || [B[a@]P[™]F =9 P
w0001 | (2) I llflt!aﬁl B ._I"=.|"|’-|-E|l:'|
woro| 0] |1 |25 dENFIE=
wot| 0| | W SC]S[z]5 1 AT E|E|ee
o [eooo| 6 £G4 DTt ~.I|"1"'|.-|ﬂ
émmm =BEUelu JAF A=
O oo 0] || B]F [LIF W AN 3p
S o[@[| ["P]G[WD w 7 ¥[Z2gn
S o[0| [G [B]H[R[I[X A AFrE
gmmmm) EIRIEE T L) |:|
< oo R[E[ITELA[Z] | [T[alnlle|j |
L HE A MO R/
wotioo| 0] |2 [LIFITT] £33+ /m
xooct 101 | (6) —=|"'|:|r-'|} _'I.Eﬁ'l:f*_+
o1 110 | (7) - }I"-I'.."ﬂ':" = .EITI.:. |'=|
20 _[ol& RO

w111 | (8) .-"|l

Addresses of CGROM memory locations match the ciens of ASCII. If the program being

currently executed encounters a command “send ciearB to port” then binary value 0101 0000
appears on the port. This value is ASCII equivaterthe character P. It is further written to LCD,
which results in displaying the symbol from the 0XO00 location of CGROM. In other words,
the character “P” is displayed. This applies tdetliers of the alphabet (capital and small), it n

to the numbers!

=

As seen on the previous map, addresses of alksdagé pushed forward by 48 in relative to their
values (digit O address is 48, digit 1 addres®isHpit 2 address is 50 etc.). Accordingly, inerd
to display digits correctly it is necessary to addiecimal number 48 to each of them prior to
sending them to LCD.

What is ASCII? Since their appearance till thesgsdaomputers can recognize only numbers but
not letters. It means that all data a computer swafh a peripheral device has binary format even

212

though the same is recognized by the man as Igttesboard is an excellent example)! It's as
simple as that- every character matches the uriquebination of zeroes and ones. ASCII is a
character encoding based on the English alphal&t.IlAicode specifies a correspondence between
standard character symbols and their numericavatgnts.

LCD Basic Commands

All data transferred to LCD through the outputs DD-will be interpreted as a command or a data,
which depends on the pin RS logic state:

RS = 1- Bits DO - D7 are addresses of the charactetsetdisplayed. LCD processor addresses
one character from the character map and disptayh¢ DDRAM address specifies the location
on which the character is to be displayed. Thisresklis defined prior character transfer or the
address of the previously trans ferred charactauismatically incremented.

RS = 0- Bits DO - D7 are commands which determine digph@de.

The commands recognized by LCD are listed in tablew:

Command RS RW D7 D6 D5 D4 D3 D2 D1 DO Execution Time
Clear display 0O 0 0 0O O o 0 0 0 1 1.64mS
Cursor home 0O 0 0 O o o 0 0 1 X 1.64mS
Entry mode set 0O 0 0 0 O o 0 1 s 40uS
Display on/off control 0O 0 0 0O O o 1 D U B 40uS
Cursor/Display Shift 0O 0 0 0 0 1 DIC RIL x x 40uS
Function set 0O 0 O O 1 DLN F X X 40uS
Set CGRAM address 0O 0 0 1 CGRAM address 40uS
Set DDRAM address 0O 0 1 DDRAM address 40uS
Read “BUSY” flag (BF) 0 1 BF DDRAM address -
Write to CGRAM or DDRAM 1 0 D7D6 D5 b4 D3 D2 D1 DO 40uS
Read from CGRAM or DDRAM 1 1 D76 D5 b4 D3 D2 D1 DO 40uS

I/D 1 = Increment (by 1) R/L 1 = Shift righ

0 = Decrement (by 1) 0 = Shift left
S 1 = Display shift on DL 1 = 8-bit intace
0 = Display shift off 0 = 4-bit inface
D 1 = Display on N 1 = Display ind lines
0 = Display off 0 = Display im® line
U 1 = Cursor on F 1 = Charactemfat 5x10 dots
0 = Cursor off 0 = Charactemnfiat 5x7 dots
B 1 = Cursor blink on D/C 1 = Displayifsh
0 = Cursor blink off 0 = Cursorfhi

213

What is Busy flag ?

Comparing to the microcontroller, LCD is an extréyndow component. Because of that, it was
necessary to provide a signal which would, uporommand execution, indicate that display is
ready for new receive. That signal, calledsy flag can be read from the line D7. When the
voltage on this line is OV (BF=0), display is reddyreceive new data.

LCD Connecting

Depending on how many lines are used for connedt®iy to the microcontroller, there are 8-bit
and 4-bit LCD modes. The appropriate mode is sateat the beginning of the operation in tha
process called initialization. 8-bit LCD mode usegputs DO-D7 to transfer data as explained on
the previous page.

The main purpose of 4-bit LED mode is to save Jaki&/O pins of the microcontroller. Only 4
higher bits (D4-D7) are used for communication, leslithers may be unconnected. Each data is
sent to LCD in two steps- four higher bits are dast (normally through the lines D4-D7) and
four lower bits are sent afterwards. Initializatienables LCD to link and interprete received bits
correctly.

Microcontroller

Can be connected
to Ground T]

? +5V

In 4-bit mode is
LT left unconnected

I I
I I
| I
|y
|| T _?'01'5\'
T
Lyt
Ly L
Lyt
RN
NEREN

Contrast

LED backlight

214

Besides, data is rarely read from LCD (it is maimgnsferred from the microcontroller to LCD) so
it is often possible to save an extra I/O pin by@e connecting R/W pin to the Ground. Such
saving has its price. Messages will be normallyldiged, but it will not be possible to read busy
flag since it is not possible to read display adl.Wwertunately, there is a simple solution. After
sending a character or a command it is importagive LCD enough time to do its job. Owing to
the fact that execution of the slowest commands l&st approximately 1.64mS, it will be fairly
enough to wait approximately 2mS for LCD.

LCD Initialization

LCD is automatically cleared upon being suppliethvélectrical power. It lasts for approximately
15mS. After that, display is ready to operate. fiteagle of operation is set by default. It means that:

1. Display is cleared.
2. Mode
DL = 1 Communication through 8-bit interface
N = 0 Messages are displayed in one line
F = 0 Character font 5 x 8 dots
3. Display/Cursor on/off
D = 0Display off
U = 0 Cursor off
B = 0 Cursor blink off
4. Character entry
ID = 1 Displayed addresses are automatically incrememnyeld
S = ODisplay shift off

Automatic reset is mostly done without any probleisstly, but not always! If for any reason
power supply voltage does not reach full value withOmS, display will start performing
completely unpredictably. If voltage supply uniinigt able to meet that condition or if it is needed
to provide completely safe operation, the procddgitialization is applied. Initialization, among
other things, causes a new reset enabling displapérate normally.

Automatic reset is mostly done without any probleisstly, but not always! If for any reason
power supply voltage does not reach full value withOmS, display will start performing
completely unpredictably. If voltage supply uniinigt able to meet that condition or if it is needed
to provide completely safe operation, the procddgitialization is applied. Initialization, among
other things, causes a new reset enabling displapérate normally.

215

Refer to figure below for the procedure on 8-bitiatization:

Power on
I
Wait for more than 15mS

RS R\W D7 D6 D5 D4 D3 D2 D1 DO
0 0 0 01 1 x x x x

I
Wait for more than 4.1mS

RS RR'W D7 D6 D5 D4 D3 D2 D1 DO
0 0 0 0 1 1 X x X X

Wait for more than 100uS

RS R'wW D7 D6 D5 D4 D3 D2 D1 DO
0 0 0 0 1 1 X x x x

RS R/W D7 D6 D5 D4 D3 D2 D1 DO
0 0 0 01 1 N F x x

O 0 0 00 01 00O
0 0 0 00O OO OO1
O 0 0 00 OO 11I1DS

v

Initialization ends

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF can be checked after
the following instructions

The number of display lines and character font
have to be defined and these values cannot
be changed after this point.

Display off
Display off
Display off

It is not a mistake! In this algorithm, the saméueas transferred three times in a row.

216

In case of 4-bit initialization, the procedure ssfallows:

Power on

l

Wait more than15mS

I

0

0 0 0 1

RS R/W D7 D6 D5 D4

1

Display is set to 8-bit mode

0

0O 0 0 1

RS R/W D7 D6 D5 D4

1

Wait more than 100uS

RS R/W D7 D6 D5 D4

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF can be checked after
the following instructions

o o0 0 0 1 1
RS R/W D7 D6 D5 D4
0O 0 0O 01 0O
0 0 0 01 O
0 0 N F x x
0 0 0O O O O
0 0 1 0 0 0
0 0 0 O 0O O
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0O 11D 8
v
Initialization ends

Start operation in 4-bit mode
After this point 4 higher bits are written first,
4 lower afterwards

The number of display lines and character font
have to be defined and these values cannot
be changed after this point

Display off

Display clear

Set entry mode

217

EXAMPLE 1
Writing header and configuring 1/0 pins
The only purpose of this program is to turn onwa f€=D diodes on port B. It is nothing special,

isn't it? Anyway, use this example to study whatal program looks like. Figure below shows a
connection scheme, while the program is on the page.

vece
(]
R I - R & hS I & I &
FOoFoFoR
10K
RESET
il LED
||}_Q r Mtk — Rer] ¥ —
[rao RBG [I
o
[ra1 RBS [] LED 330R
[raz RB4 [F— L H '
[l raz RE3 o
330R
[Ra4 RB2 [F— LED H
(ras 9 reift |
lreo (O RBO[F— Lep 7 _330R
[RE1 ; vid [J H—
Vcc [re2 vss [1
-
O——] Ddd E RD7 [] LED ;" _330R
[vss o rRDG [] -
[(osct =] rRDS [] o«
GND psc2 rRO4 [] LED 330R .
[rco rRCT |J
8MHz 4] [re RCE [] LED AX a30R
[| rc2 rRCS | S :
[l rca rRC4 [
212-3PF 01 0 roo rD3 [LED o 130R
—':| [l ro1 rRD2 [I— H [
GND "— — GND

Upon switching on, every other LED diode on thet@remits light. That is enough to indicate
that the microcontroller is properly connected apdrates normally.

This example gives description of correctly writteeader and a few initial directives. They

represent a part of the program used in all progrdescribed in this book. To skip repetitiveness,
it will not be written in the following examplesubis considered to be at the beginning of every
program (marked as a “Header”).

218

--- Example 1-

;#***W’Wi* s R RN W W W b o e o Rl R W W o o o sl R Rl R W W W o o ol e W W W

o Harme : Test.asm

o Date: November 15, 2007
2 Version: 1.00

2 Programmer: James Jones

;l’*****ii dr ol R R R R W W W W o ok o o R R ke ke e W W W ok ol o o R e e e e o o ok ok ok sk o ol o e ol W W o o o ol ol ol ol o ol ke b b ol o o o ol ol o

2 Description: Testing microcontroller
;#*****ii A SRR ARREEEEEEREERREREEEEEESEEEREREEREEEEESEEEELEEREEEEESESESEEEELEESS.;

E list p=16f337 ; Type of microcontroller
'g #include <plefd87.inc> ; Defines all SFRs
:'i‘:v* ; and bits within the PIC16FBET
errorlevel -302 ; Disables message "Regilster
¢/ 1n operand not in bank 0. Ensure that :
: bank bits are correct."
;#***Wiﬂi‘*i*i!’!’***WWW*‘*i*i##***WW'&'&***!’!’***WWW'&'& iy W W W W W o o R ke e e W W W W W o
_ CONFIG _CONFIGl, HS OSC & WDT OFF & PWRTE ON & MCLRE ON
& CP OFF & CPD OFF & BOR ON & IESC ON & FCMEN ON & LWP OFF
& DEBUG OFF - - . . a -
\ Config ward should
__CONFIG _CONFIG2Z, BOR40V & _WRT OFF be displayed in one
line
;#***Wiﬂi‘*ic:tii’i’****‘#**‘*ic:-i##***WW'&'&&:&!’#***WWW** R R R RN AN RN NN NN N
ORG 0x0000 ; Address of the first program
; lnstruction
_— o BRI e
£ g banksel TRISH ; Selects bank containing TRISE
@ E clrf TRISH ; All port B pins are configured :
(== ; as outputs :
2 W banksel PORTE ; Selects bank containing PORTE :
o c movlw B'01010101"° ; Moves number 01010101 to W :
mowvwW £ PORTH ¢ Moves number 01010101 from W to PORTE i
end ; End

The purpose of the header and initial directivdsiisfly described below.

Header:

Header is placed at the beginning of the prograch gimes basic information in the form of
comments (name of the program , release date Banjt be deluded into thinking that after a few

months you will know what that program is about &t it is saved in your computer.

Initial directives:

list p=16f887

This directive defines processor to execute a rogr

#i ncl ude <pl6f887.inc>

219

It enables compiler to access the document p1Gf&3{f you have MPLAB installed, it is placed
by default on C:\Program files\Microchip\MPASM Sa)it Every SFR register contained in this
document, as well as every bit, has its own nandeaaldress. If program reads for example:

bsf INTCON, GIE

it means that the GIE bit of the INTCON registeodld be set. Instruction as such makes no sense
for the compiler. It has to access the “.inc” doemtin order to know that the seventh bit of the
SFR at the address 000B hex should be set.

Register Definitions
W EQU H'OD00"
E EQU H'0001"
————— Register Fileg——————-—-———————
INDF EQU H'o0oo"
TMRO EQU H'OODL"
P | 3 IR
S2h e H !DT".DA'! ————— BANK (0 REGISTER DEFINITIONS —-—-
ETATU EQU H'Qpo3' | L _____ STATUS Bits —————————me
FSR EQU H'OOD4"
P
PORTA EQU ..I-D-S| IRP EQU HrO0aT"
"“BETER BErn H 0 0e
ERRTHES O H'000& RE1 EQU H'0006"
PORTC EQU H'ODO7" REO crnnecy
PORTD EQU H'OD0E" NOT TO EAEAl e
PORTE EQU H'0009' | woT ED —
PCLATH EQU H'OO0A" z d ==
INTCON — BEQU H'OO00B" oe
PIR1 EQU H'OOOC! = H Configuration Bit
PIRZ EQU H'O00D"
TR T 1 [1 .
TMR11L EQU H'ODOE" | ,_____ HTeoN Bid §
TMR1H EQU H'"QO00E" ot EQU H'2007"
T1CON EQU H'Q010" G1E :r..':-.\u'm: EQU H'2008"
TMRZ EQU H'OO011°* PETE
T2CON EQU H'aolz' | pgre 0 { imm——- Configuration Wordl -—---—-—--
TMROIE
INTE EQU H'1FEFF'
REIE EQU H'3IFFE'
TOIF EQU H'IFFE!
TMROIF H'Z2FFF"
INTF EQU H'3IFFE'
EQU H'3ITFE’
EQU H'3IFFF"
errorlevel -302

This is a “cosmetic” directive which disables thétating message “Register in operand not in ...”
to appear at the end of every compiling process.ribt necessary, but useful.

__config

This directive is used to include config word ire throgram upon compiling. It is not necessary
because the same operation is performed by softiwateading program into chip. However, do
you have any idea which software will be used by émd user? What options will be set by
default? You are the end user?! Do you know whicbhgmm you will prefer for MCU
programming to use next year? Make one day to camay, take this directive as a necessary one
and include it in your program.

220

EXAMPLE 2
Using program loop and internal oscillator LFINTOSC

This is a continuation of the previous example, degls with a bit more complicated problem...
The idea is to make LED diodes on the port B blilsimple thing at first glance! It is enough to
periodically change logic state on the port B. His tcase, numbers 01010101 and 10101010 are
selected to change in the following way:

Set binary combination 01010101 on port B

Remain in loopl

Replace existing bits combination on port B witli@0D010
Remain in loop2

Return to the step 1 and repeat the whole procedure

agrwnrE

Do you know how fast this should be done? It wdaedpossible to observe changes on port B only
if, besides delays provided in loopl and loop2,\i®le process is slowed down approximately
250 times more. Because of that, the microcontraiges internal oscillator LFINTOSC with the
frequency of 31kHz instead of external oscillatathvguartz crystal (8MHz).

You have noticed that clock signal source is chdriga the fly”. If you want to make sure of it,
remove quartz crystal prior to switch the microcolér on. What will happen? The
microcontroller will not start operating because ttonfig word loaded with the program requires
the use of quartz on switching on. If you remove thystal later during the operation, it will not
affect the microcontroller at all!

10K 10K
RESET | Lo "7 330R
lF—= @ mctr — rer[l H -
[rao RBE [1 v
[l a1 RBS [—————— L LED 330R
HFI:AI RB4 N 'l -
RAZ RE3 o
] [ras RrB2 [] LED M 23
STOP Oras U RB1 [F— ‘
. 0 reo O RBOD [F—— LED " 330R
[re1 - vdd [] 4H— :
vcc [rEZ *)] vss [1 .
&———Toda g1 Ror[l LED 330R
GND J_ [l vss oo RDE []
- - - flosc1 1 Ros (] A2 aa0m
— 0sCc2 RO4 [1 LED
0 rco rc7 [1
8MHz -] 0 red RrRcE [] Lep 7 _330R
O rcz Rrcs [1 L
RC3 RC4 []
2x20-30pF T Hnnn RO3 [] Lep 7 _330R
—Ii [ro1 rDZ [J {
GND

p— e GND

Example 2:

skkkkkkkkkkkkkkkkkkkkkkhkhhkkkkhhkkkhhkkkkhkhkkkhkkkkkkkkk kkkkkkkkkkkkkkkkkkkkkk
; Header
rkkkkkkkkkkkkkkkkkkkkkkhhkkkkhhkkkhhkkkkhkkkkkhkkkkkkkkk *kkkkkkkkkkkkkkkkkkkkk
;************* DEFlNlNG VARIAB LES *kkkkkkkkkkkkkhkkk *kkkkkkkkkkkkkhkkkhkikkk
cblock 0x20 ; Block of variabletairts at address 20h
counterl ; Variable "counteat address 20h
endc
skkkkkkkkhkkkkkhkkkkhkhkhkkkhhkhkkkhhhkkkhkhhkhkhhihkhhhkkhkhiiik *kkkkkkkkkkkkkkkkhkhikkkk
org 0x0000 ; Address of thetfpprogram instruction
banksel OSCCON ; Selects memorklzamtaining
; register OSCCON
bcf OSCCON,6 ; Selects interradibator LFINTOSC with
bcf OSCCON,5 ; the frequency bKBiz
bcf OSCCON,4
bsf OSCCON,0 ; Microcontrolleressnternal oscillator
banksel TRISB ; Selects bank cointg register TRISB
clrf TRISB ; All port B pins @aiconfigured as outputs
banksel PORTB ; Selects bank doirtg register PORTB
loop
moviw B'01010101' ; Binary number 0Q0Q1 is written to W
movwf PORTB ; Number is moved®ORTB
moviw h'FF' ; Number hFF is mdie W
movwf counterl ; Number is moved/démiable "counterl”
loopl
decfsz counterl ; Variable "countesldecremented by 1
goto loopl ; If result is Ontmue. If not,

; remain in loopl

moviw B'10101010' ; Binary number 10000 is moved to W

movwf PORTB : Number is movedPORTB

movlw h'FF : Number hFF is mdwe W

movwf counterl : Number is movedrémiable "counterl"
loop2

decfsz counterl ; Variable "countesldecremented by 1

goto loop2 ; If result is Ontmue. If not,

; remain in loop2

goto loop ; Go to label loop
end ; End of program

222

EXAMPLE 3
Using nested loop

Connection scheme is again the same. To make thitsh@ore interesting, a different combination
of port B bits change each other. And, that's nbioaicourse. As seen from the previous two
examples, the microcontroller is very fast and vaftgn it needs to be slowed down. The use of
built-in oscillator LF, as in example 2, is thetlaseasure that should be applied. The problem is
more often solved by using nested loops in a pragta this example, the variable “counterl” is
decremented 255 times by 1 in the shorter loopibr Ry leave this loop, the program will count
255 times from 255 to 0. It means that between btmty LED diode’s blink on the port, there are
255x255 pulses coming from quartz oscillator. Regi speaking, that number of pulses amounts
to approximately 196 000 since it also takes same to execute jump instructions and decrement
instructions. Yes, it's true, the microcontrolleostly waits and does nothing...

Example 3:
;~k~k~k~k~k*~k*~k*~k~k~k~k~k~k~k~k* Header *kkkkkkkkkkkkkhhkkkkhkkkk kkkkkkkkkkkkkkkkhkkkkkkkk
skkkkkkkkkikkkk DEFINING VARIABLES *kkkkkkkkkkkkkkkk *kkkkkkkkkkkkkhkkkhkhkkhkkkikk
cblock 0x20 ; Block of variablstarts at address 20h
counterl ; Variable "courteat address 20h
counter2 ; Variable "coutteat address 21h
endc
skkkkkkkkkkkkkkkkkhkhkhkkkhhkhkkhhkkkhhhhhkhhihkkhhhkkhhiiik *kkkkkkkkkkkkkhhkkkhkkhkkhkkkikk
org 0x0000 ; Address of thistfprogram instruction
banksel TRISB ; Selects banktaiming register TRISB
clrf TRISB ; Clears TRISB
banksel PORTB ; Selects bankaoing register PORTB
loop
moviw B'11110000" ; Binary numbed 10000 is moved to W
movwf PORTB ; Number is mowed®ORTB
movlw h'FF' : Number hFF isvad to W
movwf counter2 ; Number is movedariable "counter2"
loop2
movlw h'FF' : Number hFF isvad to W
movwf counterl ; Number is movedcounterl”
loopl
decfsz counterl ; Decrements "texdri by 1. If result is O
goto loopl ; skip next instiion
decfsz counter2 ; Decrements "tex@i by 1. If result is O
goto loop2 ; skip next instiion

moviw B'00001111" ; Binary numbe00Q111 is moved to W

movwf PORTB : Number is mowed®ORTB
movlw h'FF' : Number hFF isvad to W
movwf counter2 : Number is moved/ariable "counter2"

223

loop4

moviw h'FF' ; Number hFF isvad to W
movwf counterl ; Number is movedariable "counterl”
loop3

decfsz counterl ; Decrements "texdri by 1. If result is O
; Skip next ingttion

goto loop3

decfsz counter2 ; Decrements "ten2i by 1. If result is O

goto loop4 ; skip next instiion

goto loop ; Jump to labedpo

end ; End of program

224

EXAMPLE 4
Using timer TMRO and Interrupts

If you have carefully read the previous exampley yould notice a disadvantage of providing
delays using loops. In all those cases, the microbler is “captive” and does nothing. It simply

waits for some time to pass. Such wasting of tisi@n unacceptable luxury and some other
method should be applied therefore.

Do you remember the story about the timers? Abaetiupts? This example makes links between
them in a practical way. The scheme is still theesas well as the challenge. It is necessary to
provide delay long enough to notice changes onra phis time, the timer TMRO with assigned
prescaler is used for that purpose. Interrupt acour every timer register overflow and interrupt
routine increments the number in port B by 1. THeol procedure is performed “behind the
scenes” of the whole process, which enables theonoatroller to do other things.

..254,255,0,1, 2, 3...

VCCe (5V)
Ny Ny Ny
_DI _ _OI_ N]_ _./’ JI .
10K
RESET
— , LEp 7 _330R
I”_' B MCLR — RBe7 [l
[| ra0 RE6 |/ Py
[RA1 RB5 [] | LED 337)
[| raz RB4 [F—
[l ra3 RE3 o
J30R
[rag REBZ2 [F—"" LED
lras 9 RBI[F——
reo () RBO[— LED ' _330R
[l rE1 — vdd [] —
GND vee [rRE2 o) Vss [] Py
O [| Dad g RD7 |] LED 330R
I” —| vss 0o RD6 [l 1
OSC1 ~J rRD5 || Er
loscz > RD4[] LED , 230R '
[rco rc7
[re RCE [] A% 330R
BMHz
I [rc2 RC5 || - —mﬂ_ .
[reca rRC4 []
- «
2x20 SﬂpF —|— —|— 0 roo rRD3 [1 LED £ 130R
I [rD1 rD2 [] b

GND “— — GND

Pay attention to a few details:

* Even though it is unnecessary in this case, theéeots of the most important registers (W,
STATUS and PCLATH) must be saved at the beginnirigterrupt routine.

* Interrupt causes the appropriate flag bit to beoraatically set and the GIE bit to be
automatically cleared. At the end of interrupt et do not forget to return these bits the state
they had prior interrupt occurred.

225

* Atthe end of interrupt rutine, important registeh®uld be given the original content.

Example 4:
;********************** Header kkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkhkhkkkkhkkkkk
skkkkkkkkhkkkkkkkk DEFIN'NG VAR'ABLES *kkkkkkkkkkkkk *kkkkkkkkkkkkkkkkhhhkkkhkhkkkik
cblock 0x20 ; Block of varlas starts at address 20h
w_temp ; Variable ategks 20h
pclath_temp ; Variable atlsbs 21h
status_temp ; Variable atrads 22h
endc
rkkkkkkkkkkkkkkkkkkkhkkkhkk START OF PROGRAM *kkkkkkk kkkkkkkhkkkkkkkkkkhkkkkkkkkk
org 0x0000 ; Address of fingt program instruction
goto main ; Go to labeldimi'
rkkkkkkkkkkkkkhkkkkkkkkkkkk INTERRUPT ROUTINE *kkkkkk kkkkkkkkhkkkkkkkkkhkhkkkkkkkk
org 0x0004 ; Interrupt \act
movwf w_temp ; Saves valuedgister W
movf STATUS ; Saves valueagister STATUS
movwf status_temp
movf PCLATH ; Saves valugagister PCLATH
movwf pclath_temp
banksel PORTB ; Selects bamit@ining PORTB
incf PORTB ; Incrementsistgr PORTB by 1
banksel INTCON ; Selects baaktaining INTCON
bcf INTCON,TMROIF ; Clears inteptuflag TMROIF

movf pclath_temp,w ; PCLATH is givis original content
movwf PCLATH

movf status_temp,w ; STATUS is gives original content
movwf STATUS

swapf w_temp,f ; W is givenatsginal content

swapf w_temp,w

bsf INTCON,GIE ; Global inteptuenabled

retfie ; Return fronerrupt routine
;************************ MAIN PROG RAM *kkkkkkkkkkk kkkkkkkkkkkkkkkkkhkkkkkkkkk
main ; Start of thaimprogram

banksel ANSEL ; Bank contagegister ANSEL

clrf ANSEL ; Clears regitANSEL and ANSELH

clrf ANSELH . All pins aregital

banksel TRISB ; Selects bamitaining register TRISB

clrf TRISB ; All port B pgnare configured as outputs

226

banksel OPTION_REG ; Bank contagniegister OPTION_REG
bcf OPTION_REG,TOCS ; TMRO counts$sps from oscillator
bcf OPTION_REG,PSA ; Prescalerssign to timer TMRO

bsf OPTION_REG,PSO ; Prescalerisafie256
bsf OPTION_REG,PS1
bsf OPTION_REG,PS2

banksel INTCON ; Bank contamiegister INTCON
bsf INTCON,TMROIE ; TMRO interrupterflow enabled
bsf INTCON,GIE ; Global inteptuenabled
banksel PORTB ; Bank contagniagister PORTB
clrf PORTB ; Clears port B
loop
goto loop : Remain here
end ; End of program

227

EXAMPLE 5
Using subroutine, using push-buttons

In the previous examples the microcontroller exesyirogram without being influenced in any
way from its surrounding. In practice, devices apeag in this way are very rare (for example,
simple neon signs). You guess, among other compsnemput pins will be also used in this

example. There is a scheme in figure below, wintegrogram is on the next page. Everything is
still very simple.

.

_____________________________ 4
10K |:|1{IK
RESET

~
| e - g, - . LED J30R
| o *+—{|MCLR RBT |
Ll rao RB6 [} "
{| RA1 RrEs5 [} LED 330R
[l raz RB4 [F—— H
|: RAZ RB3] s 330R
& | ra4 RB2 |} LED
STOP Oras U mei[F— .
. reo () RrBO[— LEp T 330R
[l RE1 =3 vdd [J
vCcC [l rRE2 o)} Ves ||
O] pdd E ro7 [t LED 7 330R
GND [Ves D:i RD& :I o '
L J—_ 0sc1 =~ RDS || AA aa0m
- - — osc2 RD4 |1 LED _
[l rco rer U
. L
BMH }_‘ [l rCt rRce | 330R
gl | rE2 Rcs |/ L LED !
4 1 [lrcs RC4 ||
EIEI}-EUPF - j I: RDO RD3 :I LED x 130R
— [rD1 Rro2 [J *+

GND — — GND
At the beginning of the program, immediately upaifiing variables, the microcontroller pins*
are configured by using registers TRISA and TRISB.

In the main program, one bit on port B is set fifldten the contents of this register is constantly
moved by one place to the left (instruction rlif PIE}. It makes impression that LED diodes
emitting light move. To make it visible, the wh@eocess must be slow enough. Press on the push-
button “STOP” stops seeming moving and the programains in loop3. Delay is provided by
means of nested loop. This time, it is placed shart subroutine “DELAY”.

* |t is not necessary for PORTA pins since theyaurtomatically configured as inputs after every
reset.

228

Example 5:

; *kkkkkkkhkkkkhkhkkkkhhhhkkhhhkkkhkhhhkkhhhhkkhhihkkhhkkkikhiiik *kkkkkkkkkkkkkkkkhhhkkkhkhikkik
; Header
skkkkkkkkkkkkkkkkkhkkhkkkhhkkkkhhhkkkhkhhkhkhhihkkhhhkhkhkhiiik *kkkkkkkhkkkkkkkkkhhhkkhkhikkik
;************* DEFINING VARIAB LES *kkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkhkhkkkkkkkk
cblock 0x20 ; Block of varlas starts at address 20h
counterl ; Variable "ctam" at address 20h
counter2 ; Variable "cten2" at address 21h
endc ; Block of vdnies ends
;************************ MAIN PROG RAM *kkkkkkkkkkk *kkkkkkkkkkkkkkkkhhkkkhkhikkk
org 0x0000 ; Address of fingt program instruction
banksel ANSEL ; Selects baoktaining register ANSEL
clrf ANSEL ; Clears regisANSEL and ANSELH to
clrf ANSELH ; configure atiputs as digital
banksel TRISB ; Selects bamitaining register TRISB
clrf TRISB ; All port B pgnare configured as outputs
moviw B'00000010
movwf TRISA ; Pin RAL is iap
banksel PORTB : Selects bamita&ining register TRISB
moviw B'00000001" ; Writes 1 tgister W
movwf PORTB : Number is mdvwe PORTB
loop
1l PORTB ; Port B bitsates by one place left
call DELAY ; Calls subroodéi "DELAY"
loop3
btfss PORTA,1 ; Tests the fiocst A bit
goto loop3 ; "0" is appliedpin.Go to label "loop3"
goto loop ;' "1" is applismpin.Go to label "loop”
;************************ S U B RO UTI N ES *kkkkkkkkkkkk kkkkkkkkkkkkkkkkhkhkkkkkkkkik
DELAY
clrf counter2 ; Clears varmbtounter2”
loopl
clrf counterl ; Clears varmbtounterl”
loop2
decfsz counterl ; Decrementgabde "counterl” by 1
goto loop2 : Result is AoGo to label loop2
decfsz counter2 ; Decrementgabde "counter2” by 1
goto loopl ; Result is AotGo to lab loopl
return ; Return fronbsautine "DELAY"
end ; End of program

229

EXAMPLE 6

TMRO as a counter, defining new variables, using tay

This time, TMRO is used as a counter. The ide® isonnect counter input to one pushbutton so
that it counts one pulse at a time upon every bugpieess. When the number of counted pulses
becomes equal to the number in register TEST, loge voltage (5V) will be applied to the
PORTD, 3 pin. Since this voltage activates eleatexhanical relay, this bit is called the same-
“Relay”.

In this example, the TEST register contains nundbétaturally, it could be any number and could
be calculated or entered via keyboard. Besidesgansof relay, the microcontroller can activate
some other device and instead of push-buttonsnituse sensors. This example illustrates one of
the most common usage of the microcontroller iugtd,. When something is done as many times
as needed, then something else should be switched aff...

vee
Input l,
{ 10K
.
et
|—0 ¢ MCLR — RB7 [l
[| RAD RB6 |J
[RA1 RB5 [I
|| RA2 RB4 ||
[| RA3 RE3 ||
{| RA4 rRe2 ||
l| RAS U RB1 [/
i JrRee () RBo0|[
[RE1 a vdd [] VCC
10K VCC [| RE2 Vss [] o
O—1| pdd g RO7 [I Relay
{| Vss 0 ROG ||
— 1 —{osc1 =l RD5 [J
GND — 0SC2 RD4 ||
| rRcO rRc7 [
8MHz »_“] | rC1 rRce || ! i
| RC2 RCS5 || 2K — |
[|rRC3 rc4 || ™, |
2x20-30pF —= [RDO rRO3 [| { f,' !
|| RD1 RD2 || _j /
GND — GND —=

Example 6:

rkkkkkkkkkkkkkkkkhkkhkkhkkhkkhkhkkhhkhkkhkkhkkhkkhkkkhkkkkhkkhkkhkkkx *kkkkkkkkkkkkkkhkkkhkkhkkkkkkk
’

X Header
230

rhkkkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkk kkkkkkkkkkkkkhkkhkkhkkhkkkkkkk

’
;************* D E F | N | N G VA R IA B L E S *kkkkkkkkkkkkkkkk *kkkkkkkkkkkkkkhkkhkkhkkkkkkk

TEST equ B'00000101' ; Binary numb@®00101 = TEST
#define RELAY PORTD,3 ; Pin PORTD,RELAY

;************************ MAIN PROG RAM *kkkkkkkkkkk kkkkkkkkhkkkkkkkkkhkkkkkkkkk
org 0x0000 ; Address of tinst program instruction
banksel TRISB ; Selects bamitaining register TRISB
clrf TRISB ; All port B pgnare configured as outputs
clrf TRISD ; All port D pgnare configured as outputs
moviw B'00010000" ; This numbewistten to W register
movwf TRISA ; Only the forgin of port A is input

banksel OPTION_REG ; Bank contagn®PTION_REG register

bsf OPTION_REG,TOCS ; Pin RA4 isligd with pulses
bsf OPTION_REG,PSA ; Prescaler mte1

banksel PORTB ; Selects bamit@ining PORTB register
clrf TMRO ; Clears timayister
bcf PORTD,3 ; Pin PORTD,B =

loop
moviw TMRO ; Timer regisisrmoved to W register
movwf PORTB ; W registen®ved to PORTB
xorlw TEST ; Operation exgive OR between

; W register amgmber TEST (00000101)

btfsc STATUS,Z ; If numbers agual, result is 0 and
bsf PORTD,3 ; bit STATUS,Z=Bit PORTD,3 is set
goto loop ; and jump tbehloop is executed
end ; End of program

231

EXAMPLE 7

Using macros in the program, using debounce routine

You have probably noticed in the previous exampia the microcontroller does not operate
always as expected. Namely, by pressing push-hQuttomber on port B is not always incremented
by 1. Since it is about mechanical push-buttonsy thsually make several short successive
contacts upon have been activated. You guess, ittecantroller registers and counts all that...

w --254,255,0,1,2,3.
— | #0 oW o4 ¥

| | |]
L 10K| | 10K 10K
| RESET
— : Lep 7 _330R
3 +—{lmctk " Rer|[H— | —
(| Rao REG |
= s
[l A RES [} LED 330R
[l raz RE4 []
[ra3 RE3 [} A
JI0R
INCREMENT [l rag REZ [} H_LED Lo
: Oras O et
reo () reofl Lep Y 330R
T DECREMENT Oret = vad|[—“—:l
Voo Qrez @ vyas |l .y
| {1 pdd g RO7 [] LED 3R
s + {lvas o Ros [l '
GND —T—_ Josct ~I Ros|l 1 330R
0sC2 RD4 [! L LED —
[reo RCT |
[re RCE [] 1 330R
aMH X
2l [l re2 Res [] - ﬂﬂ_:—u
Ores Red]
2x20-30pF TT e 03 | LED . 330R
+ [ro RD2 [] —H—| —
GND — GND —

There are several ways to solve this problem. Thisgram uses program delay known as
debounceBasically, it is a simple procedure. Upon inphéicge detection (button press), a short
program delay is provided and program waits fortla@ochange (button release). Only after that,
the program comes to a conclusion that the bui@ctivated.

In this very case, push-button is tested by mednsazrobutton Besides, this macro contains
program delay which is provided by means of anoth&cropausems

Main program is relatively simple and enables thaiable “cnt” to be incremented and

decremented by using two push-buttons. This vagiablthereafter copied to port B and affects
LED diodes (logic one (1) turns LED diode on, whdgic zero (0) turns LED diode off).

232

Example 7:

rhkkkkkkkkkkkhkkkkkkkkhkkik H ead er kkkkkkkkkkkkkkkhkkhkkhk **

;************* D E F | N | N G VAR IAB LES *kkkkkkkkkkkkkkkk

*kkkkkkk

cblock 0x20 : Block of varlas starts at address 20hex
Hlcnt
LOcnt
LOOPcnt
cnt
endc : End of blodkvariables
; kkkkkkkkhkhkkhkhkkkkkkkkkkkkkkkhkhkhkhkhkhkhkkhkkkkkkkkkkkkhkkhkhkhkhkik kkkkkkhkkhkhkkkkkkkkkkkk
ORG 0x000 ; Reset vector
nop
goto main ; Go to progratart (label "main™)
; kkkkkkhkkkhkkhkhkkkkkkkkkkkkkkhkhkhkhkhkhkhkkhkkhkkkkkkkkkkkkhkkhkhkhkhkik kkkkkkhkkhkhkkhkhkkkkkkkkkk
include "pause.inc"
include "button.inc"
; *kkkkkhkkhkhkkhkkkkkkkhkhkhkkkkkhhhhkhkhkhkhhhhhhhhkhkkkkkikkhkhihkikik *kkkkkkkhkhkhkhkhkkkkkkkk
main
banksel = ANSEL ; Selects baoktaining ANSEL
clrf ANSEL ; All pins aregital
clrf ANSELH
banksel TRISB
bsf TRISA, O
bsf TRISA, 1
clrf TRISB
banksel PORTB
clrf cnt
Loop
button PORT,0,0,Increment
button PORT,1,0,Decrement
goto Loop
Increment
incf cnt, f
movf cnt, w
movwf PORTB
goto Loop
Decrement
decf cnt, f
movf cnt, w
movwf PORTB
goto Loop
end ; End of program

233

Macro “pausems”

rhkkkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkkhkkkhkkhkkhkkk kkkkkkkkkkkkkhkkkkhkkik
’

pausems MACRO argl

local Loopl
local dechi
local Delaylms
local Loop2
local End

moviw High(argl) ; Higher byteafgument is moved

; to Hicnt
movwf Hlcnt
moviw Low(argl) ; Lower byte afgument is moved
; to LOcnt
movwf LOcnt
Loopl
movf LOcnt, f : Decrements Rtiland LOcnt while

btfsc STATUS, Z ; needed andscsdibroutine Delaylms

goto dechi
call Delaylms
decf LOcnt, f
goto Loopl

dechi
movf Hicnt, f
btfsc STATUS, Z
goto End
call Delaylms

decf Hlcnt, f
decf LOcnt, f
goto Loopl
Delaylms: ; Delaylms pd®s delay of
moviw .100 : 100*10us=1ms
movwf LOOPcNt ; LOOPcnt<-100
Loop2:
nop
nop
nop
nop
nop
nop
nop
decfsz LOOPcnt, f
goto Loop2 ; Execution tiwfeLoop?2
return ;is 10 us
End
ENDM

rhkkkkkkkkkkkkkkkkkkkkhkkkkhkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkk kkkkkkkkkkkkkhkkhkkhkkik

Macro “button”

234

rhkkkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkk **
’

button MACRO port,pin,hilo,label
local Pressedl ; All labels laeal
local Pressed?2
local Exitl
local Exit2

IFNDEF debouncedelay ; Enables debeudime to be defined
; iIn main progra
#define debouncedelay .10

ENDIF

IF (hilo == 0) ; If pull-up ude

btfsc port, pin ; If “1”, pushution is pressed
goto Exitl

pausems debouncedelay ; Wait for 18efmunce
Pressedl
btfss port, pin

goto Pressedl

pausems debouncedelay ; Wait untdaséd and

goto label ; jJump to spexifaddress
Exitl

ELSE ; If pull-dowsed

btfss port, pin

goto Exit2 ; If “0”, pushition is released

pausems debouncedelay ; Wait for 18efmunce
Pressed2
btfsc port, pin

goto Pressed2

pausems debouncedelay ; Wait untdaséd and

goto label ; jJump to spexifaddress
Exit2

ENDIF

ENDM

skkkkkkkkkkkkkkkkhkkkhkkkhkkhkkhkkhhkhkkhkkhkkhkkhkkkhkkkkhkkhkkhkkkx *kkkkkkkkkkkkkkhkkhkkk

235

EXAMPLE 8

Using timer TMR1 and using interrupt

16-bit timer TMRL1 is used in this example. By ocguyg its registers TMR1L and TMR1H, an
interrupt occurs and number on port B is incremengdl that is already seen in the previous
examples. The difference is in program delay winsch bit longer this time because the prescaler
rate is 1:8.

VCC (5V) ..254, 255 0,1, 2, 3...
I o S I - 5 I - Y I
e 3 Bl S S
10K
RESET
| —-— Lep " 330R
||| +—Jmcr ~ RBT [|
[rao RB6
0 ra1 RBS [——— LED *7 330R
[l raz RB4 |F——
[l rA3 RB3]—‘ X 330R
[l rA4 RB2 [F——— LED H : p
[l RAS Y RB1 [F—
lreo (O RBO[F— Lep " 330R
0 rE1 a vad []
GND vee [re2 vss |1
| O—1 pdd g RD7 [] Lep 7 330R
I|| [l vss I5) rRD6 ||
osc1 -J RDS [l A
—loscz X>» RD4a[l LED 3R
[rco RCT [] .
[rei RCE [] A7 330R
8MH
ZJ_UI_‘ [rcz recs (] L LED
i 0 rc3 rca [I
2x20-30pF [l roo RD3 |1 Lep ;7 _330R
[rD1 rD2 [I 4
GND — ~—— GND
Example 8:
skkkkkkkkkkkkkkkkkkkkhkhhkhkhkhkhk H ead e r- *kkkkkhkkkkkkkkk kkkkkkkkkkkkkkkkkkkkhkhkhkhkhkik
skkkkkkkkkkkkk DEFINING VARIAB LES *kkkkhkkkkkkkkkkkk kkkkkkhkkkkkkkkkkkkkkkkhkkhkk
cbhlock 0x20 : Block of varlas starts at address 20h
w_temp ; Variable atlegks 20h
pclath_temp ; Variable atlsss 21h
status_temp ; Variable atrads 22h
endc
skkkkkkkkkkkkkkkkkkkkhkhkhkik PROGRAM START *kkkkkkkkkk *kkkkkkkkkkkk
org 0x0000 ; Address of fingt program instruction
goto main ; Jump to labehin”
skkkkkkkkkkkkkkkkkkkkkhkhkik I N TE R R U PT RO UTI N E
*kkkkkhkhkhkhkkhkkkkkkkhkkhkkhkkkhkhhkhkhkhkhkhkhkhkx
org 0x0004 ; Interrupt \act
movwf w_temp ; Save registér

236

movf STATUS ; Save regisEdrATUS
movwf status_temp

movf PCLATH ; Save regisRCLATH

movwf pclath_temp

banksel PORTB ; Selects bamit@ining PORTB

incf PORTB ; Register PORiEBncremented by 1
movf pclath_temp,w ; PCLATH is giviés original content

movwf PCLATH

movf status_temp,w ; STATUS is gives original content
movwf STATUS

swapf w_temp,f ; W is givenatsginal content

swapf w_temp,w

banksel PIR1 ; Selects bamitaining PIR1
bcf PIR1,TMR1IF ; Clears intgrtdlag TMR1IF

bsf INTCON,GIE ; Global inteptuenabled

retfie ; Return fromerrupt routine
rkkkkkkkkkkkkkkhkkkkkkkkhkk MAI N P ROG RAM
*kkkkkkkkkkkkhkhkkkkhhhkkkhkhkhkkkhkhhhkkhkhkhhkkkhkhihik
main ; Start of mamogram

banksel ANSEL ; Selects baoktaining register ANSEL

clrf ANSEL ; Clears regitANSEL and ANSELH

clrf ANSELH ; All pins aregital

banksel TRISB ; Selects bamitaining register TRISB

clrf TRISB ; All port B pgnare configured as outputs

banksel T1CON ; Selects bamktaining register TLCON

bcf T1CON,TMR1CS ; TMR1 countdgms generated by oscillator

bsf T1CON,T1CKPSO ; Prescaler iate8
bsf T1CON,T1CKPS1
bsf T1CON, TMR1ON ; Turns on tinTeviR1

banksel PIE1 ; Selects bamita@ining register PIE1
bsf PIEL,TMR1IE ; TMRL1 interrupterflow enabled
bsf INTCON,PEIE ; Peripheral mtab interrupt enabled

; Timer TMR1 babs to peripheral modules
bsf INTCON,GIE ; Global inteptuenabled

banksel PORTB ; Selects bamit&ining register PORTB
clrf PORTB ; Clears port B
loop
goto loop ; Remain here
end ; End of program

237

EXAMPLE 9

Using timer TMR2, configuring quartz oscillator

This example illustrates the use of timer TMR2. Therocontroller uses internal oscillator
HFINTOSC with the frequency of 500 kHz. The whotegram works as follows. After the period
of time defined by register PR, prescaler and jpasts has expired, an interrupt occurs. Interrupt
routine decrements the content of the PR registérsanultaneously increment the content of port
B. Since the number in register PR which determmvben interrupt is to occur is constantly
decremented, interrupt will occur for shorter ahdrger period of time. In other words, counting
will be carried out faster. A new cycle of accetedacounting starts after every register PR
overflow.

Example 9:
; *kkkkkkkkkkkkhkkkkkkikikkk H ead er
kkkkkkkkkkkkkkkkkkhkkkhhhkkkhhkkkhhkkkhkhkkkhkhkkkkkkkkk
Fkkkkkkdok DEFINING VARIABLES
kkkkkkkkkkkkkhkkkkhkhhkkkhhkkkhkhhkkkhkkkkhkhkkkkhkkkkkkk

cblock 0x20 ; Block of varlas starts at address 20h

w_temp ; Variable atlegks 20h

pclath_temp ; Variable atlas 21h

status_temp ; Variable adrads 22h

endc
rkkkkkkkkkkkkkkkkkkkkkkkk P ROG RAM START
*kkkkkkkkkkkkhkkkhkhhhkkkhkhhkkhkhhhkkkhhhkkhkhikkiik

org 0x0000 ; Address of tinst program instruction

goto main ; Jump to labehkin®
skkkkkkkkkkkkkkhkkkkhkkkkkhkkk | N TE R R U PT RO UTI N E
;c***********~k~k************************

org 0x0004 ; Interrupt \act

movwf w_temp ; Save regidhér

movf STATUS ; Save regissarATUS

movwf status_temp

movf PCLATH ; Save regisRCLATH

movwf pclath_temp

banksel PORTB ; Selects bamitaining PORTB

incf PORTB ; Increments PIERregister by 1

banksel PR2 ; Selects bamkaining PR2

decf PR2 ; PR2 is decnetaé by 1

movf pclath_temp,w ; PCLATH is giviés original state
movwf PCLATH

movf status_temp,w ; STATUS is gives original state
movwf STATUS

swapf w_temp,f ; W is givenatsginal state

238

swapf

banksel

bcf

bsf

retfie

rhkkkkkkkkkkkkkkkkkkhkkhkkik
’

main

banksel

bcf
bsf
bsf
bsf

banksel

clrf
clrf

banksel

clrf
clrf

banksel
movlw
movwf

clrf

banksel

bsf
bsf

bsf
loop

goto

w_temp,w

PIR1 ; Selects bamitaining PIR1
PIR1,TMR2IF ; Clears intgrtdlag TMR2IF
INTCON,GIE ; Global inteptuenabled

; Return fromerrupt routine
MAIN PROGRAM
*kkkkkkkkkkkkhkhkkkhkhhhkkkhhhkkhkhhhkkhhhkkhkhhkiiikx
; Start of thaimprogram

OSCCON ; Selects bakaining register OSCCON
OSCCON,6 ; Selects ingwscillator HFINTOSC with
OSCCON,5 ; frequency 00BHz
OSCCON,4
OSCCON,0 ; Microcontrolieses internal oscillator

ANSEL ; Selects baoktaining register ANSEL
ANSEL ; Clears regigtANSEL and ANSELH
ANSELH ; All pins aregital

TRISB ; Selects bamitaining register TRISB
TRISB ; All port B pgnare configured as outputs
PR2

T2CON ; Selects bamhtaining register T2CON

H'FF' ; Sets all canitregister bits

T2CON ; prescaler=1:p6stscaler=1:16 TMR2=0ON
PORTB

PIE1 ; Selects bamitaining register PIE1
PIE1,TMR2IE ; TMR2 interrugmabled
NTCON,PEIE ; Peripheral mi@$ interrupt enabled

: Timer TMR2 babs to peripheral modules
INTCON,GIE ; Global inteptuenabled
loop ; Remain here
; End of program

end

239

EXAMPLE 10

Module CCP1 as PWM signal generator

Since having the wide range of possibilities thePQ@odules are commonly used in practice. This

example illustrates the use of CCP1 module in PWhkiden Bits of the CCP1CON register

determine that the module operates as single-olRpUM. The same bits determine the PWM
frequency to be 4.88 kHz. To make things more é@séang, the duration of the output P1A

(PORTC,2) pulses may be changed by means of pustrnusymbolically called “DARK” and
“BRIGHT”. Push-buttons are tested in interrupt natinitiated by the timer TMR1. Any change

affects LED diode so that it changes light intgnditote that port B does not use external resistors
because internal pull-up resistors are enabled. Winele process of generating PWM signal is

performed “behind the scenes”, which enables theauontroller to do other things.

|:|1IJH'.
RESET

VCC
1

/88491 0Id

RET
REG
RES
RE4
RE3
REBE2
RE1
RED
Vdd
Vss
RDT
RD&
RDS
RD4
RCT
RCE
RCS
RC4
RD3
RD2

L‘,L_II_.I_II_II_II_II_l

N [W N [N N [y S [y _— -

i,
” o o |
[
[
[
[
i
[
0
]
VCC 0
o]
N ;
GND)
i
8MH [
z ¢ |
2%20-30pF E
o |
GND ——
— A
LED | *
330R
— GND

¢ me:

! } BRIGHT

I"'

GND

240

Example 10:

;***************'k****** Header kkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkhkkkkhkkkkk
;************* DEF'N'NG VARIAB LES *kkkkkkkkkkkkkhkkk *kkkkkkkkkkkkkkkkhhhkkhkhkkkik
cblock 0x20 ; Block of varlas starts at address 20h
w_temp ; Variable atlegks 20h
pclath_temp ; Variable atleass 21h
status_temp ; Variable atrads 22h
endc

#define DARK PORTB,0 ; Push-buttomARK" is connected
; to PORTB,0 pin

#define BRIGHT PORTB,1 ; Push-buttorRIBHT" is connected
; to PORTB,1 pin

rkkkkkkkkkkkkkkkkkkkkkkkk PROGRAM START kkkkkkkkkkk kkkkkkkkkkkkkkkkhkhkkkkkkkkk
org 0x0000 ; First programstruction address
goto main ; Jump to labehin”
skkkkkkkkkkkkkhhkkkkhkkkkkhkk INTERRUPT ROUT'NE *kkkkkk kkkkkkkkkkkkkkkhhhkkkhkhkhkkkikk
org 0x0004 ; Interrupt \act
movwf w_temp ; Save regidhér
movf STATUS ; Save regissEarATUS
movwf status_temp
movf PCLATH ; Save regisRCLATH
movwf pclath_temp

banksel CCPR1L

btfss DARK ; Tests pushtbot"DARK"

decf CCPR1L ; Push-buttoprisssed - decrement CCP1L by 1
btfss BRIGHT ; Testing pudhtton "BRIGHT"

incf CCPR1L ; Push-buttopisssed - increment CCP1L by 1
movf pclath_temp,w ; PCLATH is giviés original content

movwf PCLATH

movf status_temp,w ; STATUS is gives original content
movwf STATUS

swapf w_temp,f ; W is givenatsginal content

swapf w_temp,w

banksel PIR1 ; Selects bamitaining PIR1

bcf PIR1,TMR1IF ; Clears intgrtdlag TMR1IF
bsf TMR1H,7 ; Acceleratemér TMRO counting
bsf TMR1H,6 ;

bsf INTCON,GIE ; Global inteptuenabled

retfie ; Return fromerrupt routine

241

skkkkkkkkkkkkkkkkkhkkhkkhkkk *kkkkkkkkkkk *kkkkkkkkkkkkhkkhkkhkkhkkkkkkk
; MAIN PROGRAM

main ; Start of thaimprogram
banksel ~ ANSEL ; Selects baoktaining register ANSEL
clrf ANSEL ; Clears regigANSEL and ANSELH
clrf ANSELH ; All pins aregital
banksel OPTION_REG ; Selects bamkaining register ANSEL
bcf OPTION_REG,7 ; Pull-up resistenabled
bsf WPUB,0 ; Pull-up resrst enabled
bsf WPUB,1 ; on port B phand 1
banksel TRISC ; Selects bamhtaining register TRISC
clrf TRISC ; All port C mrare configured as outputs
banksel T1CON ; Selects bamktaining register TLCON
bcf T1CON,TMR1CS ; TMR1 operatssa timer
bcf T1CON,T1CKPSO ; Prescaler rate:8
bcf T1CON,T1CKPS1
bsf T1CON,TMR1ON ; Activates timeEVIR1
banksel PIE1 ; Selects bamita@ining register PIE1
bsf PIE1,TMR1IE ; Interrupt TMRdenabled
bsf INTCON,PEIE ; Peripheral mtas interrupts are
; enabled
bsf INTCON,GIE ; Global inteptuenabled

movlw B'11111101" ; Prescaler TMR2:4
banksel T2CON

movwf T2CON

moviw B'11111111" ; Number in ggr PR2
banksel PR2

movwf PR2

banksel CCP1CON
moviw B'00001100" ; Bits to confrg CCP1 module
movwf CCP1CON

loop
goto loop : Remain here
end ; End of program

242

EXAMPLE 11

Using A/D converter

PIC16F887 A/D converter is used in this exampleerlhing is quite simple. Variable analog
signal is applied on the AN2 pin while the resultconversion is shown on port B as a binary
number. In order to simplify the program as muclpassible, only 8 lower bits of the result of
conversion are shown. GND is used as a negativagmlreference Vref-, while positive voltage
reference is applied on the AN3 pin. It enablesagd measurement scale to “stretch and shrink”.

To make this clear, A/D converter always generateld-bit binary result, which means that it
detects total of 1024 voltage levels (210=1024)febence between two voltage levels is not
always the same. The less difference between \aettVref, the less difference between two of
1024 levels. Accordingly, the A/D converter is atdadetect slight changes in voltage.

VCC
10K
| e | ep 7 330R
I|| o o—+—{MctrR '~ Re7ll
[l RAo RBG [——— IT
[rat RBS LED , 33R |
{| RA2 RE4
vEc [A3 RBI [1 33R
I ‘*’g‘: [l Rad RB2 [———— LED -
Qras U rat y
oltage Reference,” [[rReo () Reo]—‘ LEp ¢ 33R
ORE1 =& Vdd[] H [
VCC lrez @ vss i pp
l O {| Ddd E ro7 L] LED 330R
j—‘ vss @ ROBU oip e
o 0SC2 R4 [] LED ,
ND 8MHz "{] [reo rer [l
1 [Rt Ree [] LED A1 33R
T [re3 Re4 [pp
[l roo rD3 [] LED 330R
GND =" [gpy RD2 (I —H—:l_"

— GND

243

Example 11:

; *kkkkkkkkkkkkkhkkkkkkkkik H ead e r kkkkkkkkhkkkkkkkkkkik kkkkkkkkkkkkkkkkkhkkkkhkkkkk
;************************ PROG RAM START *kkkkkkkkkk kkkkkkkkkkkkkkhkhhkkkhkhkhkkkhkhikkx

org 0x0000 ; Address of fingt program instruction

banksel TRISB ; Selects bamitaining register TRISB

clrf TRISB ; All port B pgnare configured as outputs

moviw B'00001100

movwf TRISA ; Pins RA2 andRare configured as inputs

banksel ANSEL ; Selects baoktaining register ANSEL

moviw B'00001100" ; Inputs AN2 alN3 are analog while

movwf ANSEL ; all other piase digital

clrf ANSELH

banksel ADCON1 ; Selects bamttuding register ADCON1
bsf ADCON1,ADFM ; Right justiation of result

bcf ADCONL1,VCFG1 ; Voltage Vsaised as Vref

bsf ADCON1,VCFGO ; RA3 pin volag used as Vref+

banksel ADCONO ; Selects baoitaining register ADCONO
moviw B'00001001" ; AD converteses clock Fosc/2, AD channel
movwf ADCONO ; on RA2 pinused for conversion and
; AD convertsranabled
loop
banksel ADCONO
btfsc ADCONO,1 ; Tests bit G@RE
goto loop ; Conversiompnogress, remain in
; loop
banksel ADRESL
movf ADRESL,w ; Lower byte adnversion result is
; copied to W
banksel PORTB
movwf PORTB ; Byte is copiedPORTB
bsf ADCONO,1 ; Starts new wersion
goto loop ; Jump to latiebp™
end ; End of program

244

EXAMPLE 12

Using EEPROM memory

This example demonstrates write to and read froilt-inDuEEPROM memory. Program works as
follows. Main loop constantly reads EEPROM memaogaktion at address 5 (decimal). This
number is displayed on port D. The same loop tissstate of three push-buttons connected to
port A. The push-buttons “INCREMENT” and “DECREMENTave the same purpose like in
example 7 - increment and decrement the variabi€' tghich is thereafter displayed on port B.
The push-button “MEMO” enables that variable tovinten to EEPROM memory. In order to
check it, it is enough to press this push-buttod switch off device. On the next switch on, the
program displays the value of variable on port D tfee moment of writing, this value was

displayed on port B).

INCREMENT

WCC
O

1

10K

1 I—ﬂ
=
=

L I_'
=
=

|:'1UK
RESET
e

2 +

ks

DECREMENT

MEMO

| s O N s Y s Y N s Y s Y N O |

vCC
=
— GMD
[
[
BMHz] i
2x20-30pF —— .
T
GND — "

MCLR
RAD
RA1
RAZ
RAZ
Rhd
RAS
RED
RE1
RE2
Ddd
Vas
OsC1
O5C2
RCO
RC1
RC2Z
RC3
RDD
RD1

28849101d

RET
REE&
RBS
RBd4
REI
REZ
RE1
REOD
Vidd
Was
RDT
RDE&
RDS5
RD4
RCT
RCE
RCS5
RC4
RD3
RDZ

ITT7

=

A
LED

LED -

e

-

EE
LED

o
LED

o
LED

o
LED

L
| LED 330R

LED “

AT 3R

—

-
LED

o

LEDII C
b

o

LEDII I:I I

o

JI0R

. BN

330R

JI0R

JI0R

JI0R

JI0R

JI0R

J30R

JI0R

J3I0R

JI0R

JI0R

JI0R

JI0R

GND —

GHND —

245

Example 12:

skkkkkkkkkkhkkkkhkkkhkkkhkhkkk F1e6ujer *kkkkhkkkhkkkkkhkkkhkkkik *kkkkhkkkkkkkkkhkkkhkkkhkkkikkk
skkkkkkkkkkhk Deflnlng Va“ables |n program *kkkkkkk *kkkkkkkhkkkhkkkkkkkhkkhkkkkhkkk

cbhlock 0x20 : Block of varlas starts at address 20h

Hlcnt

LOcnt

LOOPcnt

cnt

endc : End of block
skhkkkkkkkkkkhkkhkkkhkkkhkhkkkhkhkkhhkhkkhkhkkhhkhkhhkkkhkhkhhkkhkhhkkhkhkkhkhkk *kkkkkkkkkkhkkkhkkkhkhkkhkhkkhkhkkkk

ORG 0x000 : Reset vector

nop

goto main ; Go to startlod program (label "main™)

rhkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkkhkkhkkhkkhkkkkhkkkhkkhkkhkkk kkhkkkkkkkkkkkkkhkkhkkhkkkkkkk

include "pause.inc"
include "button.inc"

skkkkkkkkkkkkkkkkhkkkhkkkhkkhkkhkkhhkkhkkhkkhkkhkkhkkhkkkkhkkhkkhkkkx *kkkkkkkkkkkkkkhkkkhkkhkkkkkkk
’

main
banksel ANSEL ; Selects baoktaining ANSEL
clrf ANSEL
clrf ANSELH ; All pins aregital
banksel TRISB
bsf TRISA, O ; Input pin
bsf TRISA, 1 ; Input pin
bsf TRISA, 2 ; Input pin
clrf TRISB ; All port B pgnare outputs
clrf TRISD ; All port D pgnare outputs
banksel PORTB
clrf PORTB ; PORTB=0
clrf PORTD ; PORTD=0
clrf cnt ; cnt=0

Loop

banksel PORTA

button PORTA,0,0,Increment
button PORTA,1,0,Decrement
button PORTA,2,0,Save

banksel EEADR

moviw 5 ; Reads EEPROMmMory location
movwf EEADR ; at address 5

banksel EECON1

bcf EECON1,EEPGD

bsf EECON1,RD ; Reads datenfEBEEPROM memory
banksel EEDATA

movfw EEDATA : Moves data\io
banksel PORTD
movwf PORTD : Data is movfemm W to PORTD

246

goto Loop

Increment
incf cnt, f
movf cnt, w
movwf PORTB
goto Loop
Decrement
decf cnt, f
movf cnt, w
movwf PORTB
goto Loop
Save
banksel EEADR
moviw 5

movwf EEADR
banksel PORTB
movifw PORTB
banksel EEDAT
movwf EEDAT

banksel EECON1

; Increments e@mon port B

; Decrements Ipeinon port B

; Copies datarfiport B to EEPROM
; memory locatat address 5

; Writes address
; Copies portdBregister W

; Writes datateamporary register

bcf EECON1,EEPGD
bsf EECON1,WREN : Write enabled

bcf INTCON,GIE ; All interruptiisabled
btfsc INTCON,GIE

goto $-2

moviw 55h

movwf EECONZ2

moviw H'AA'

movwf EECONZ2

bsf EECON1,WR

btfsc EECON1,WR ; Wait for write complete

goto $-1

bsf INTCON,GIE ; Interrupt etedd
bcf EECON1,WREN

goto Loop
end

; Tests pushtdmos again

; End of program

247

EXAMPLE 13

Two-digit LED counter, multiplexing

In this example, the microcontroller operates as@digit counter. Concretely, the variable Dval
is decremented (slow enough to be visible) andatse is displayed on twodigit LED display (99-
0). The challenge is to enable binary number t@wdreverted in decimal one and split it in two
digits (tens and ones). Besides, since the LEDIalispegments are connected in parallel, it is
necessary to ensure that they change fast in dodenake impression of simultaneous light
emission (time-division multiplexing). Remember ttiva electronics, multiplexing allows several
analog signals to be processed by one analog-tadignverter (ADC). In this very case, time-
division multiplexing is performed by the timer TNARwhile binary to decimal number conversion
is performed in macro “digbyte”. Counter may beetds its starting value (99) at any moment by

pressing the pushbutton “COUNTER RESET".

LSD digit

DVCC (5V)
VCC (5V)
=
e " A - - MCU RESET
= = .
— — |
o 0 |
GHDT]_[|| -
COUNTER MCLR — RB7 [l
RESET {| ran RES [
—— | rad Rres [l
ot [| raz RrE4 [I
[ras rE3]
[rad rEz []
Oras 9 greill o ~
L [rea O reoll —
- [red — vdd [] -
GND GND Vee [rez % vas [I —
O—| Ddd o rO7T — 4 % 330R o
IH ———] Vs oo RO6 [}
] osc1 N rosl %
0sc2 rD4 [1 -
[rco re7] 3
AMHz [l [re1 ree U =
[re2 res [
[res red]
Zai-opF ROD RD3]—‘ 4 x 330R
ROA RDZ]—| E—
GHND — -
b

248

Example 13:

;************************* F1e€“jer *kkkkkkkkhkkkkkkkk kkkkkkkkkkkkkkkkkhkkkkhkkkkk
skkkkkkkkhkkkkkkkkkhkhkhkkkhkhhkkkkhhhkkkhkhhkhkhhihkkhhhkkhkhiiik *kkkkkkkkkkkkhkkkkhhhkkhkhikkkk
; DEFINING VARIABLES IN PROGRAM

w_temp EQU 0x7D ; Variable faveg W register

status_temp EQU Ox7E ; Variable fawvisg STATUS register

pclath_temp EQU Ox7F ; Variable favimg PCLATH register

CBLOCK 0x20 ; Block of vabias starts at address 20h

Digtemp

Dig0 ; Variables fisplaying digits - LSB

Digl

Dig2

Dig3 ; Variables fisplaying digits - MSB

Dval ; Counter value

One ; Auxiliary vabile which determines which

; display islie switched on
ENDC ; End of blockvariables
poc_ vi EQU .99 ; Initial coenwvalue is 99

include "Digbyte.inc"

skkkkkkkkkkkkkkkkkkkkkkhkhhkkkkhhkkkhkhhkkkhkkkkkhhkkkkkkkk kkkkkkkkhkkkkkkkkkhkkkkkkkkk
ORG 0x0000 ; First instiantaddress
goto main ; Jump to labehiin”
skkkkkkkkkkkkkkkkkhhhkhkkkhhkkkkhhkkkhhhhhkhhhhkkhhhhkkhkhiikik *kkkkkkkkkkkkhkkkkhhhkkhkhikkk
ORG 0x0004 ; Interrupt \erchddress
movwf w_temp ; Move w regrste w_temp register
movf STATUS,w : Move STATUSgister to status_temp

movwf status_temp ; register

movf PCLATH,w ; Move PCLATHGgister to pclath_temp
movwf pclath_temp ; register

; Start of interrupt routine...

BANKSEL TMRO

movlw .100
movwf TMRO
bcf INTCON, TOIF

bcf PORTA, O

249

bcf PORTA, 1
btfsc One, 0
goto Lsdon
goto Msdon

Lsdon
incf One, f
moviw HIGH (Bcdto7seq)
movwf PCLATH
digbyte Dval
movf Digl, w
call Bcdto7seg ; Place L1 maskhe PORTD
movwf PORTD
bsf PORTA, 1
goto ISR_end

Msdon
incf One, f
moviw HIGH (Bcdto7seq)
movwf PCLATH

digbyte Dval
movf Dig0, w
call Bcdto7seg ; Place LO maskhe PORTD

movwf PORTD
bsf PORTA, O
goto ISR_end

; End of interrupt routine...

ISR_end
movf pclath_temp,w ; PCLATH regrsiegiven its original
movwf PCLATH ; State
movf status_temp,w ; STATUS regissggiven its original
movwf STATUS ; State
swapf w_temp,f ; W registegigen its original
; State
swapf w_temp,w
retfie ; Return fromerrupt routine
main
banksel ANSEL ; Selects baoktaining ANSEL
clrf ANSEL ; All pins aregital

clrf ANSELH

BANKSEL TRISA

moviw b'11111100" ; RAO and RA® aonfigured as outputs and
; used for 74s@nt display multiplexing
; RA2 is inpuigh-button for initializa
; tion

250

movwf TRISA
clrf TRISD

BANKSEL OPTION_REG
moviw b'10000110" ; TMRO is incremted each 32us (Fclk=8MHz)
movwf OPTION_REG

BANKSEL PORTA
moviw poc_vr

movwf Dval ; Dval contaiosunter value
moviw b'00000001" ; Initializesr\addle specifying display
movwf One ; to switch on
movwf PORTA
moviw .100
movwf TMRO ; TMRO interrugppr.every 10ms
bsf INTCON, GIE ; Global inteptuenabled
bsf INTCON, TOIE ; Timer TMRO ertupt enabled
bcf INTCON, TOIF
Loop
btfss One, 3 ; Falling edgeauntered?
goto Dec ; Yes! Go to Dec
btfss PORTA, 2 ; Counter rdagton pressed?
goto Reset ; Yes! Go tod®es
goto Loop
; Decrement Dval counter by 1
Dec
btfss One, 3
goto Dec
movf Dval, f
btfsc STATUS, Z ; Is Dval equal0?
goto Loop ; If it is, go lbop and wait for T2
decf Dval, f ; If Dval notegj to O, decrement it by 1
goto Loop
Reset
btfss PORTA, 2 ; Wait for rigiedge
goto Reset
moviw poc_vr
movwf Dval ; Write initiaalue to counter
goto Loop
;** *kkkkkkkhkkkkkkkkkhhhkkkhikkkik
ORG 0x0300 ; Lookup taldet the top of third page, but
; can be plaeédome other place, it is impor
; tant to hatvall on one page
Bcdto7seg

addwf PCL, f
DT 0x3f, 0x06, 0x5b, 0x4f, 0x66,88K 0x7d, 0x07, Ox7f, Ox6f

rhkkkkkkkkkkkkkkkkkkkkhkkkkhkkhkkkhkkhkkhkkhkkhkkhkkkkkhkkhkkk kkkkkkkkkkkkkkkhkkhkkhkkhkkhkkkk

| END ; End of program

Macro “dighyte”:

251

digbyte MACRO arg0
LOCAL Exit0
LOCAL Exitl
LOCAL Exit2

clrf Dig0

clrf Digl

clrf Dig2

clrf Dig3

movf arg0, w

movwf Digtemp

moviw .100
Exit2

incf Dig2, f

subwf Digtemp, f
btfsc STATUS, C

goto Exit2

decf Dig2, f

addwf Digtemp, f
Exitl

moviw 10

incf Digl, f

subwf Digtemp, f
btfsc STATUS, C

goto Exitl

decf Digl, f

addwf Digtemp, f
Exit0

movf Digtemp, w

movwf Dig0

ENDM

Macro digbyte is used to convert number from digitadecimal format. Besides, digits of such
decimal number are stored into special registersrder to enable them to be displayed on LED
displays.

252

EXAMPLE 14

Sound generating, using macros

The generation of sound is a task commonly assigméae microcontroller. Basically, it all comes
to generating pulse sequence on one output pinledbing so, the proportion of logic zero (0) to
logic one (1) duration determines the tone pitath laynchanging different tones, different melodies
arise.

Obviously, it all still remains in the area whichet microcontroller is specialized in. In this
example, any press on push-buttons T1 and T2 gesesiasound. The appropriate instructions are
stored in macro “beep” containing two arguments.

| Frequency: the greater number, the higher tone
BEEEP MACRO freq, duraticn

|7 Duration: the greater number is, the longer it lasts

VCC (5V) T
E{ ;_ § + Reset
| I (mcir — Re7 [
L [| rao REG ||
! ! 0 rat RB5 []
[| raz RB4 []
T1 { { T2 [ras RE3 []
9 T [rRA4 rB2]
! Oras U RE1 []
= [REO () Rreoll vCC GND
[l rEY - Ved [F—0
[| rRE2 (o)) Vss]—{ ||
[pdd g RD7 [1
[l ves o) RDG []
losc1 =l RDS []
[l oscz RD4 [1
[reco rc7 [
aMHz 3] [re1 RC6 []
[rez rRes []
[l rea rc4 ||
2x20-30pF L— | rDo rO3 I
—Er | RD1 rRD2 [
GND —
Example 14:
shkkkkkkkkkkkkkkhkkkkhkkkhkk H ead e r- *kkkkkkkkkhkkkkkkkhkkk *,kkkkkkhkkkhkkkkhkkkhkkkhk
skkkkkkkkkkkkkhkkkkhkkk Defining Variables In program *kkkkkkkkkkhkkkhkkkhkkkkik
cbhlock 0x20

253

Hicnt ; Auxiliary vales for macro pausems
LOcnt

LOOPcnt

PRESCwait

Beep TEMP1 ; Belongs to mdBEEP"

Beep _TEMP2

Beep_TEMP3

endc

#define BEEPport PORTD, 2 ; Speaker pin
#define BEEPtris TRISD, 2

expand

rhkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkx kkkkkkkkkkkkkkkkkhkkik

ORG 0x0000 ; RESET vectubdrass
goto main ; Jump to progrstart (label - main)

rkkkkkkkkkkkkkkkkhkkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkx *kkkkkkkkkkkkkkhkkhkkik
’

; remaining code goes here

include "pause.inc"
include "button.inc"
include "beep.inc"

main
banksel ~ANSEL ; Selects baoktaining ANSEL
clrf ANSEL ; All outputsedigital

clrf ANSELH

banksel TRISD
moviw b'11111011" ; PORTA D iniization
movwf TRISD
banksel PORTD
BEEPInit ; Macro “Beep”

Loop
button = PORTD,0,0,Playl ; Push-button 1
button = PORTD,1,0,Play2 ; Push-button 2
goto Loop

Playl ; First tone
BEEP OxFF, 0x02
BEEP 0x90, 0x05
BEEP 0xCO0, 0x03
BEEP OxFF, 0x03
goto Loop

Play2 ; Second tone
BEEP 0xBB, 0x02
BEEP 0x87, 0x05
BEEP 0xA2, 0x03
BEEP 0x98, 0x03
goto Loop

254

rhkkkkkkkkkkkkkkkkkkkkhkkhkkkkhkkkhkkhkkhkkhkkkkhkkkkkhkkhkkk kkkkkkkkkkkkkhkkhkkhkkhk

END ; End of program
Macro “beep”:

BEEPinit MACRO
bcf STATUS, RPO
bcf STATUS, RP1
bcf BEEPport
bsf STATUS, RPO
bcf STATUS, RP1
bcf BEEPtris
moviw b'00000111" ; TMRO prescake 1:256
movwf OPTION_REG ; OPTION <- W
bcf STATUS, RPO
bcf STATUS, RP1
ENDM

BEEP MACRO freq, duration
bcf STATUS, RPO
bcf STATUS, RP1
moviw freq
movwf Beep_TEMP1
moviw duration
movwf Beep_TEMP2
call BEEPsub
ENDM

rkkkkkkkkkkkkkkkkhkkhkkkhkkhkkhkhkkhhkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkx *kkkkkkkkkkkkkkhkkhkkk

: Subroutines

BEEPsub
clrf TMRO ; Counter inilization
bcf INTCON, TOIF
bcf BEEPport
BEEPa
bcf INTCON, TOIF ; Clears TMRO @flow Flag
BEEPDb
bsf BEEPport
call B_Wait ; Logic one "dUration
bcf BEEPport
call B_Wait ; Logic zero "@uration
btfss INTCON, TOIF ; Check TMRO Qflew Flag,
goto BEEPD ; skip nextet s
decfsz Beep TEMP2,f ;Is Beep TEMRR2?
goto BEEPa ; Go to BEEPaiag
return
B_Wait

movf Beep_ TEMP1, w

movwf Beep_TEMP3
B Waita

decfsz Beep_TEMP3, f

goto B_Waita

return

255

EXAMPLE 15
Using LCD display

This example illustrates the use of alphanumeri®Lldisplay. The program itself is very simple
because macros are used (Usually the effort onde mawriting software pays always back).

Two messages written in two lines change on displag second message is intended to display
current temperature. Since in this case the meamunieis not really carried out (no sensor is used),
the variable “temp” appears on display instead e&sured temperature.

In true device, the current temperature or someratteasured value would be displayed.

Data lines

ovee

?SV
A
5K T
* Control lines
Hmn ~ o LT
=

CONTRAST

Em RBG 1 d
RA{ ras [W
1z e [BEYEEYRINEE
L EIH.! rE3 [
RAd pR2}————— . .
|' RESET PR - =t S— mikroslektronika
(eee © wo[————
= R Beograd
i E ro7 [
[vss fo Ro6 [l
O8C1 =) R 1
0scE R4 [I
4MHz Eﬂﬁ RE rer [1
[rec e [1
20-30pF #0-30pF | [roz res (1
[rcy rea [1
[roa rDa [1
GND — — [ro1 ROz []
GHND
Example 15:
shkkkkkkhkkkkhkkkhkkkhkhkkkhkkkik Header *kkkkkkkkkhkkkhkkkikkk *kkkkhkkkhkkkkhkkkhkk
: DEFINING VARIABLES IN PROGRAM
CBLOCK 0x20 : Block of vabiles starts at address 20h
Hlcnt ; Belongs to matpausems”
LOcnt
LOOPcnt
LCDbuf ; Belongs to @ions "LCDxxx"
LCDtemp
LCDportBuf ; LCD Port Buffe

256

Digtemp ; Belongs to matdigbyte™
Dig0
Digl
Dig2
Dig3

temp
ENDC : End of block

LCDport EQU PORTB ; LCD is on PORTB (4 dataekmon RB0O-RB3)
RS EQU 4 : RS line connected to RB4
EN EQU5 ; EN line connected to RB5

skkkkkkkkkkkkkkkkkkkkkkhkhhkkkkhhkkkhhkkkkhkkkkkhkhkkkkkkkk *kkkkkkkhkkkkkkkkkhkkk
ORG 0x0000 ; Reset vectiirass
nop
goto main ; Go to begirmof the program (label "main")
skkkkkkkkkkkkkkkkkkkkkkhkhhkkkkhhkkkhkhhkkkkhkhhkkkhkkkkkkkkk kkkkkkkkhkkkkkkkkkkkk

include "LCD.inc"
include "digbyte.inc"
include "pause.inc"

skkkkkkkkkkkkkkkkkkkkkkhhhkkkkhhkkkhkhhkkkhkhkkkkhhkkkkkkkk *kkkkkkkhkkkkkkkkkkkk
main

banksel ANSEL ; Selects baoktaining ANSEL

clrf ANSEL ; All pins aregital

clrf ANSELH

bcf STATUS,RPO ; BankO activéyo
bcf STATUS,RP1

moviw 23
movwf temp ; Move arbitrarglue to variable
; is to be deydd on LCD
lcdinit ; LCD initializeon
Loop
lcdcmd 0x01 ; Instructiondear LCD

lcdtext 1, "mikroelektronika" ; Writextefrom the begin
; ninfitbe first line
lcdtext 2, "Beograd" ; Write text fraime beginning of
; the seconetlin
pausems .2000 ; 2 sec. delay
lcdemd 0x01 ; Instructiondlear LCD
lcdtext 1, "Temperatural” ; Write text frahe begin
; ning of thestiline
lcdtext 2, "temp="; Write text from the beging of
; the second line

lcdbyte temp ; Write varialptkec.)
lcdtext O, " C" ; Write text aftearsor
pausems .2000 ; 2 sec. delay
goto Loop
skkkkkkkkkkkkkkkkkkkkkkhkhhkkkkhkkkkhhkkkhkkkkkhkkkkkkkkk kkkkkkkkkkkkkkkkkhkkk

257

end

LCD.inc

; End of program

rhkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkx

kkkkkkkkkkkkkhkkhkkhkkik

; Initialization must be done by using macro Ictimefore access

;ing LCD
;**
Icdinit MACRO
bcf STATUS, RPO ; BankO
bcf STATUS, RP1
clrf LCDportBuf
movf LCDportBuf, w
movwf LCDport
bsf STATUS, RPO ; Bankl
bcf STATUS, RP1
clrf TRISB ; LCDport withutput LCD
bcf STATUS, RPO ; BankO
bcf STATUS, RP1
; Function set (4-bit mode change)
moviw b'00100000
movwf LCDbuf
swapf LCDbuf, w
movwf LCDportBuf
bcf LCDportBuf, RS
movf LCDportBuf, w
movwf LCDport
bsf LCDportBuf, EN
movf LCDportBuf, w
movwf LCDport
bcf LCDportBuf, EN
movf LCDportBuf, w
movwf LCDport
call Delaylms ; 1 ms delay

; Function set (display mode set)

lcdemd

call

b'00101100'

Delaylms ; 1 ms delay

; Display ON/OFF Control

lcdemd

call

b'00001100

Delaylms ; 1 ms delay

; Entry Mode Set

lcdemd

call

b'00000110'

Delaylms ; 1 ms delay

; Display Clear

lcdemd
pausems .40

b'00000001"
; 40 ms delay

*kkkkkkkkkkkkkkhkkhkkk

258

; Function set (4-bit mode change)
moviw b'00100000
movwf LCDbuf
swapf LCDbuf, w
movwf LCDportBuf
bcf LCDportBuf, RS
movf LCDportBuf, w
movwf LCDport
bsf LCDportBuf, EN
movf LCDportBuf, w
movwf LCDport
bcf LCDportBuf, EN
movf LCDportBuf, w
movwf LCDport
call Delaylms

; Function set (display mode set)
lcdemd b'00101100'
call Delaylms

: Display ON/OFF Control
lcdemd b'00001100'
call Delaylms

; Entry Mode Set
lcdemd b'00000110'
call Delaylms

; Display Clear
lcdemd b'00000001'
pausems .40

ENDM

rkkkkkkkkkkkkkkkkhkkkhkkkhkkhkkhkkhhkhkkhkkhkkhkkhkkkhkkkkhkkhkkhkkkx

; 1 ms delay

; 1 ms delay

; 1 ms delay

; 1 ms delay

; 40 ms delay

*kkkkkkkkkkkkkkhkkhkkk

; lcdemd sends command to LCD (see the table oprinaous page)

. lcdclr is the same as Icdcmd 0x01

rhkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkx
’

Icdcmd MACRO LCDcommand
movlw LCDcommand
call LCDcomd
ENDM

LCDcomd
movwf LCDbuf
bcf LCDportBuf, RS
movf LCDportBuf, w
movwf LCDport
goto LCDwr
LCDdata

kkkkkkkkkkkkkkkhkkhkkik

: Send command@dL

259

movwf LCDbuf

bsf LCDportBuf, RS
movf LCDportBuf, w

movwf LCDport

goto LCDwr
LCDwr

swapf LCDbuf, w

call SendwW
movf LCDbuf, w
call SendwW
return

SendwW
andlw OxOF

movwf LCDtemp

moviw OxFO

andwf LCDportBuf, f
movf LCDtemp, w
lorwf LCDportBuf, f
movf LCDportBuf, w

movwf LCDport
call Delaylms

bsf LCDportBuf, EN
movf LCDportBuf, w

movwf LCDport

bcf LCDportBuf, EN
movf LCDportBuf, w

movwf LCDport
call Delaylms
return

rkkkkkkkkkkkkkkkkhkkkhkkkhkkhkkhkhkkhhkhkkhkkhkkhkkhkkkhkkkkhkkhkkhkkkx *kkkkkkkkkkkkkkhkkhkkk

; lcdtext writes text containing 16 characters \ahiepresents a
; macro argument. The first argument select setbetéine in which
; text writing is to start. If select is 0O, textitumg starts from

; cursor current position.

rhkkkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkk kkkkkkkkkkkkkkkhkkhkkik
’

lcdtext MACRO select, text

: This macrotes text from cursor

; current positi Text is specified
; in argumennhsisting of 16 charac

; ters

local Message
local Start

local Exit
local i=0
goto Start
Message DT text
DT 0

Start
IF (select ==1)

lcdecmd b'20000000'

; Create lootalge from arguments

260

ELSE
IF (select == 2)

lcdecmd b'11000000'

ENDIF
ENDIF

WHILE (i<16)
call Message+i
addiw 0

bz Exit

call LCDdata

; Repeat condital program compiling 16 times
; Read lookugedaand place value in W

; until O is cka
; Call routinsjplaying W on LCD

i=i+1

ENDW
Exit

ENDM

rhkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkx kkkkkkkkkkkkkhkkhkkhkkik

; This macro writes value in size of 1 byte on LCD
; excluding leading zeros

skkkkkkkkkkkkkkkkhkkkhkkkhkkhkkhkkhhkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkkx
’

Icdbyte MACRO arg0

*kkkkkkkkkkkkkkhkkhkkk

digbyte arg0 ; A hundredndiig2,
; Aten is inddiand one in Dig0

movf Dig2, w

addlw 0x30

call LCDdata

movf Digl, w ; If digit isfove cursor

addiw 0x30

call LCDdata

movf Dig0, w ; If digit isfove cursor

addlw 0x30

call LCDdata

ENDM
;** *kkkkkkkkkkkkkkkkhkhikk
; 1ms Delay
Delaylms:

moviw .200

movwf LOOPcnt
Delay10us:

nop ;1us

nop ;lus

nop ;1us

nop ;lus

nop ;1us

nop ;lus

nop ;1us

decfsz LOOPcnt, f ;1lus

goto Delay10us ;2US

return

261

EXAMPLE 16

RS232 serial communication

This example illustrates the use of the microcdl@rdEUSART module. Connection to PC is

enabled through RS232 standard. Program workserfdliowing way. Every byte received via

serial communication is displayed using LED diodesnected to port B and is automatically
returned to the transmitter thereafter. If errocws on receive, it will be signalled by switching
LED diode on. The easiest way to test device ojmeran practice is by using a standard Windows
programHyper Terminal

—
I |
|i

&mn-nbij::::>

Communication |
Cable
Y

‘D(i%;gaqgﬁj‘

_ — MCLR = RET

10K

;!
EEE
BEE

i e s e v o i e}

g

4
33888
$2238

RAZ RE
Rad RB2
REA
RED

10uF

VoD
il 8] T
= (=0
cw r
aw
mon
n

VoL

[

Was
ROT

18849101d

CETAVIN
BgzE28ga
i
H
g

Mz

2ol

ROO RD3
RM RDZ
Gl = -4
Ta = —
¢ = GHND
—
Fx
Example 16:
rhkkkkkkkkkkkkkkkkkkhkkhkk Header kkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkhkkkkkkkk

; DEFINING VARIABLES IN PROGRAM

w_temp EQU 0x7D ; Variable faveg W register
status_temp EQU Ox7E ; Variable favisg STATUS register
pclath_temp EQU Ox7F ; Variable favisg PCLATH w register

262

chlock 0x20 : Block of varlas starts at address 20 h

Port_A ; Variable adaglss 20 h

Port B ; Variable atlagss 21 h

RS232temp ; Variable atragds 22 h

RXchr ; Variable ataelss 23 h

endc ; End of blodkvariables
rkkkkkkkkkkkkkkkkkkkkkkhkhhkkkkhhkkkhkhhkkkkhkkkkkhkkkkkkkkk kkkkkkkkkkkkkkkkkkkk

ORG 0x0000 ; Reset vector

nop

goto main ; Go to begimof program (label "main™)
skkkkkkkkkkkkkkkkkkkkkkhkhhkkkkhhkkkhhhkkkhkkkkkhhkkkkkkkk kkkkkkkkhkkkkkkkkkkkk

ORG 0x0004 ; Interrupt \ercaddress

movwf w_temp ; Save valuategister

movf STATUS,w ; Save valueSSTATUS register

movwf status_temp

movf PCLATH,w ; Save valueRTLATH register

movwf pclath_temp

rhkkkkkkkkkkkkkkkkkkhkkhkkhkkkkhkkkhkkhkkhkkhkkhkkhkkkkkhkkhkkkx kkkkkkkkkkkkkhkkhkkhkkik

; This part of the program is executed in intermguttine

banksel PIEl

btfss PIEL1, RCIE

goto ISR_Not_RX232int
banksel PIE1

btfsc PIR1, RCIF

call RX232_int_proc

ISR_Not_RX232int

movf pclath_temp,w

movwf PCLATH ; PCLATH is gimats original value

movf status_temp,w

movwf STATUS ; STATUS is givés original value

swapf w_temp,f

swapf w_temp,w ; W is givenotsginal value

retfie ; Return fromerrupt routine
skkkkkkkkkkkkkhkkkkhkkhkkkhhkhkkhhhkkkhhhkhkhhhkkkhhhhkkhkhiikik *kkkkkkkkkkkkkkkkhkhikk
RX232_int_proc ; Check if erfas occurred

banksel RCSTA

movf RCSTA, w

movwf RS232temp

btfsc RS232temp, FERR

goto RX232_int_proc_FERR
btfsc RS232temp, OERR
goto RX232_int_proc_ OERR
goto RX232_int_proc_Cont

RX232_int_proc_FERR

bcf RCSTA, CREN : To clear FERIR receiver is first
: switched offcaon afterwards

263

nop ; Delay ...

nop

bsf RCSTA, CREN

movf RCREG, w ; Reads recepgister and clears FERR bit
bsf Port_A, O ; Switches LED (QUART error indicator)
movf Port A, w

movwf PORTA
goto RS232_exit

RX232_int_proc_ OERR
bcf RCSTA, CREN ; Clears OERR bi

nop ; Delay ...

nop

bsf RCSTA, CREN

movf RCREG, w ; Reads recerg@ister and clears FERR bit

bsf Port A, 1 ; Switches LED (QUART error indicator)
movf Port_A, w

movwf PORTA

goto RS232_exit

RX232_int_proc_Cont
movf RCREG, W : Reads receidath
movwf RXchr
movwf PORTB

movwf TXREG ; Sends datakoecPC
RS232_exit
return ; Return fronteimupt routine

rhkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkx kkkkkkkkkkkkkhkkhkkhkkik
’

; Main program

main
banksel ANSEL ; Selects baoktaining ANSEL
clrf ANSEL ; All inputs addgital

clrf ANSELH

banksel TRISA
moviw b'11111100
movwf TRISA
moviw b'00000000"
movwf TRISB

banksel PORTA
moviw b'11111100'
movwf PORTA
movwf Port_A

264

moviw b'00000000
movwf PORTB
movwf Port_ B

banksel TRISC
bcf TRISC, 6 ; RC6/TX/CK =tput
bsf TRISC, 7 ; RC7/RX/DT =purt

banksel BAUDCTL
bsf BAUDCTL, BRG16
banksel SPBRG
moviw 51 : baud rate 436
; (Fosc/(4*(SRB8+1))) Error +0.16%
movwf SPBRG
clrf SPBRGH

banksel TXSTA

bcf TXSTA, TX9 ; Datais 8-hiide

bsf TXSTA, TXEN ; Data transm@@senabled
bcf TXSTA, SYNC ; Asynchronousde

bsf TXSTA, BRGH ; High-speed Baate

banksel RCSTA

bsf RCSTA, SPEN ; RX/DT and TX/@utputs configuration

bcf RCSTA, RX9 ; Select mode 8ebit data receive

bsf RCSTA, CREN ; Receive datalded

bcf RCSTA, ADDEN ; No addresseatrion, ninth bit may be
; used as pality

movf RCSTA, W

movf RCREG, W

E)anksel PIE1
bsf PIE1l, RCIE ; USART RXx imgot enabled

bsf INTCON, PEIE ; All periphenaterrupts enabled
bsf INTCON, GIE ; Global inteptuenabled

end ; End of program

265

Appendix C: Development Systems

How to start working?

A microcontroller is a good-natured “giant from thettle” and no extra knowledge is required to
use it.

In order to create a device controlled by the naordroller, it is necessary to provide the simplest
PC, program for compiling and simple device to $fanthat code from PC to chip itself.

Even though this process is quite logical, there aften some queries, not because it is
complicated, but for numerous variations. Let'stgethe point...

WRITING PROGRAM IN ASSEMBLY LANGUAGE

In order to write a program for the microcontrollea specialized program in Windows
environment may be used. It may, but it does neeha...When using such a software, there are
numerous tools which facilitate operation (simulatool comes first), which is an obvious
advantage. But there is also another way to wrippgogram. Basically, text is the only thing that
matters. Because of that, any program for textgssioig can be used for that purpose. The point is
to write all instructions in such order they shobkl executed by the microcontroller, observe the
rules of assembly language and write instructioreciy as they are defined. In other words, you
just have to follow the program idea! That’s all!

Loop button PORTA,0,0,Increment
button PORTA,1,0,Decrement
goto Loop

Increment incf cnt,f
movf cnt,w
movwf PORTB
goto Loop

Decrement decf cnt,f
movf cnt,w
movwf PORTB

To enable compiler to perform its task successfitllis necessary that a document containing this
program has the extension, .asm in its name, famg@ie: Program.asm

When a specialized program (MPLAB) is used, thiteesion will be automatically added. If any
other program for text processing (Notepad) is udesh the document should be saved and
renamed. For example: Program.txt -> Program.asm.

Note for lazy ones: skip this procedure, open a nasm document in MPLAB and simply
copy/paste the text of the program written in asdgianguage.

266

COMPILING PROGRAM

Microcontroller does not understand assembly lagguas such. That is why it is necessary to
compile the program into machine language. It igenthan simple when using a specialized
program (MPLAB) because a compiler is part of thévgare! Just one click on the appropriate
icon solves the problem and a new document witk ex@éension pops out. It is actually the same
program, but compiled into computer language winttrocontroller perfectly understands. Such
document is commonly named “hex code” and represseemingly meaningless sequence of
numbers in hexadecimal numerical system.

:03000000020100FA1001000075813F
7590FFB29012010D80F97A1479D40
90110003278589EAF3698E8EB25B
AS585FEA2569AD96EGDSFEDOFAD
AF6DD00000001FF255AFEDS89EA
F3698E8EB25BAS85FEA2569AD96
DAC59700D00000278E6DSFED9FA
DAF6DD00000001FF255AFEDSFED
9FADAF6DDO00F7590FFB29013278
E6DSFEDO9FADAF6DDO0O0000001FF2
S55AFEDS89EAF3698ESEB25BA585
FEA2569AD96DAC59D9FADAF6D
DOOO00001FF255AFEDSFED9FADA
F6DDO00F7590FFB29013278E6D82
7/8E6DSFEDI9FAS89EAF3698E8EB2
5BA585FEA2569AD96DAF6DD000
00001FF2DAF6DD0O0000001FF255A
ADAF6DD00000001FF255AFEDSFE
D9FA

In case some other software for program writinggsembly language is used, a special software
for compiling program must be installed and usedfaiews: set up the compiler, open the
document with .asm extension and compile. The raesuhe same- a new document with .hex
extension. The only problem you have now is thet gtored in your PC.

PROGRAMMING A MICROCONTROLLER

To enable “hex code” transmission to the microaaldr it is necessary to provide a cable for
serial communication and a special device callegyf@mmer with appropiate software. There are
several ways to do it.

A lot of programs and electronic circuits havingttipurpose can be found on Internet. Do as
follows: open hex code document, set a few paraseted click the icon for compiling. After a
while, a sequence of zeros and ones is to be progeal into the microcontroller through the serial
connection cable and programmer hardware. Theretisng else to be done except for placing the
programmed chip into the target device. In casis ihecessary to make some changes in the
program, the previous procedure may be repeateéochited number of times.

Is this a happy ending?

267

This section briefly describes the use of MPLABgreom and programmer software developed by
Mikroelektronika. Everything is very simple...

You have already installed MPLAB, haven’'t you? Openew project and a new document with
extension.asm.

VL Ve e Dl P Dok Dalges e Hel

D@ "l SRS TY o et B S | Dedeas kil | p nedb PR

Ld Chlock [=-13 I Focetal EAN-m =1 Iﬂ'“ = TR
w0] = ——
o i = T w -
N = wL o O oooesan
LT LocmenT i ST
LB cmt el g L) 0 OB
Ly ande = FoRT o o ooossa
[i PRTH Lo 0 O
______ . R aa? BT on 0 Eeaatn
1 H FrRKTMES Fidgreaais msEcrdis -4 ket = & s
= ¥ HETE o O (OB
x o Lt) Fawat vactor K W4T) R
4 girt Hais aam T o o ooossam
13 L FIE Lo 0 e
- | . aan *ima on 0 OEeaan
g R [Ll) Istarapt wactor =4 e s 0 aasEE
ik Ti-iL Lo 0 (e
1 Jota Rais i Trams LAT&FAPT TUTLns *ar ™ wm N NEEN
L] aw Ticm m LR
D Hain m = o O O
i vapkssl THIER i Pacalak progress "w L) m 9 messxn
T rat TEIRA, 0 :-. :::',: : 3 i
k tat TEIEA, L a] B o CEEEAE
4 =led TRIEE auw SEFRAL - o LTI
B asksal BoETH T ocFhal o O O a
& =lef cael o =
T
B Laop o PORTA, 0,0, Poencai 1 b r
1] BT ER rowTA, L, 0, smanii in
1] qete Lagp "
1 ir =
r » e
Iy pavecky Lnot car, f 1
i movd cak - L =]
I3 B L] - o
3 quti [=TT an
&7 = i = a s
L] Smaryi dect cak, f e Emn o " o
» movd cak, w
4 :
1] o BOHTH
1 quts Lagp
: . s Tesfe g o e e b e e e Y
"] T FF FY EF FT OF FF TX FF PT BF PF OF PV
= T FF FY FF T OF FF XX FF FT FF PP OOFOFF
i " FF FF FF IF PP
o FTORF FToOE PT
o FTORF FTOOW PT
e FFFF PP IF PP .o
- FTORFOFT TE T ...,
™ FEORF P TR OPT ...,
L Fr #F FF FEPT s
o FTOFFOFT TEOFT ...,
o FYOFF FT TF T FX FF FT FF ORT NFOFTo...
B FF FF FF IR FP PF PP FT PP T FF PP ..o
o FFORF FTOOE B FTORFOFT TE To..
S0 OF FF IT FF FF T P ¥ FT N¥ FF FT FF T OF PTo..
Ll F¥ FF FF PP FF FF FF IR PP FF PP FT FF FT R PP ...
@ YO TF FF T FF FY FF FT OF FF YW FF FT FF PP NF PP
L4 B £ 2

o Fr. it ma wa ik baad molels ae we

OK. You have written a program and tested it by mseaf simulator. Program did not report any
error during compiling process? It seems that eteryg is under control...

Aszssembling...
PRIMER1.ASM

100%

Erroes: 0
Warninas:
Reported: 0
Suppressed: 0
Messages:
Reported: 3
Supprezsed. 0

Lines Azzembled: 253

268

Program is written and successfully compiled. lomy left over to program the microcontroller.
For this purpose it is necessary to have programandr software intervening between PC and
programmer hardware (PIC Flash for example). Sgathis program...

Settings are simple and there is no need for aohditiexplanations (type of the microcontroller,
frequency and clock oscillator etc.).

* Connect PC and programmer via USB cable
* Load HEX code using command: File -> Load HEX
» Click the “Write” push-button and wait...

= mikroElektronika - PicFLASH [v7.07] with mikrolCD
Ele Device Buffer Windows USE About History

- Device
I:l:nhg.ld‘.nnﬂ ks a -
! PIC1GF3ET ix
e PLOLGRSEY _|
Oscillabor | INTOSCIO - RAE &5 |70, AAT &5 10 - &+ Mone l —][— l
Watchdog Timer Dizhlad - (™ 0000k - 1FFFR | Al I][I
Werify Blark
Power Up Timer | Enabled -
- - FLASH Program Memory
Master Clear | £ nabled - Wirite Enalble I Erase][Resat l
Data EE Protect Dssbled - i+ ‘wliile prabection O
Browin Dut Detect | B0 Disabled - QOO0 - DOFFh Pretected I Load HEX]
™ D000 - O7FFh Protectsd
Int-Ext Switchover Doabled - L l Reload HEX l
™ D000 - OFFFh Protected
Fail-safe Clle. Monitor | £ riabled - I Sava HEX |
Low Voltage Program | Dissbled -
In-Circuit Debugger | ICD Disabied = [#] Calbeation weed Protect
Cal. Word
Browni-out Reset Sel. ootk 21V -
[cooe || eeprom |

1D Locations
IFFF IFFF IFFF JIFFF Cleai | —— |

Frogram Memors Sce: B E Dienice Status: |dhe Type
EEFROM Sze: 256 Bytes Addrazs: Dk Renvizice

Prograss:
| 0%

File: DH\PIC PROJEKTIPRIMER 1. HEX
Device: PICLIGFEET Ciperation: Mone

That's all' The microcontroller is programmed anerything is ready for the operation. If you are
not satisfied, make some changes in the progranrepeht the procedure. Until when? Until you
feel satisfied...

269

Development systems

A device which in testing program phase can sineutaty device is called development system.
Apart from the programmer, the power supply unid aime microcontroller's socket, the
development system contains also elements for ipms activation and output pins monitoring.
The simplest version has every pin connected to parsh-button and one LED as well. High
quality version has LED displays, LCD displays, pamature sensors and all other elements which
the target device can be supplied with. These pergls could be connected to MCU via miniature
jumpers. In that way, the whole program may beetk#t practice during its writing because the
microcontroller does not know whether its inpuadivated by a push-button or a sensor built in a

real machine.

Development system EasyPIC5

270

